Supporting Information

A Giese Reaction for Electron-Rich Alkenes

Qi Huang, Sankar Rao Suravarapu, and Philippe Renaud*

Table of Contents

1	Gene	eral Information	. 3
	1.1	Instrumentation	. 3
	1.2	Materials	. 3
2 List of Substrates		of Substrates	. 5
	2.1	List of Alkenes	. 5
	2.2	List of Radical Precursors	. 6
3	General Procedures		. 7
4 Experimental Procedures and Spectroscopic Data		rimental Procedures and Spectroscopic Data	. 8
	4.1	Preparation of Substrates	. 8
	4.2	Radical Addition Products	12
	4.3	Modification of Radical Adducts	45
_	Cree	+za	ло

1 General Information

All the glassware was oven-dried or flame dried under vacuum, cooled under vacuum, and back-filled with nitrogen. Unless otherwise stated, all reactions were performed under nitrogen atmosphere. For flash column chromatography silica gel 60 Å (230–400 mesh particle size) was used. Thin layer chromatography (TLC) was performed using *Macherey-Nagel* ALUGRAM®Xtra SIL G/UV254, 0.2 mm silica gel; visualization under UV light (254 nm) and/or by dipping in a solution of (NH₄)₂MoO₄ (15.0 g), Ce(SO₄)₂ (0.5 g), H₂O (90 mL), conc. H₂SO₄ (10 mL); or KMnO₄ (3 g), K₂CO₃ (20 g) and NaOH 5% (3 mL) in H₂O (300 mL) and subsequent heating.

1.1 Instrumentation

¹H and ¹³C NMR spectra were recorded on a Bruker Avance III HD-300 spectrometer operating at 300 MHz for ¹H and 75 MHz for ¹³C at rt (24-25 °C) or on a Bruker Avance III HD-400 or a Bruker Avance II-400 spectrometer (¹H: 400 MHz; ¹³C: 101 MHz) unless otherwise stated. Chemical shifts (δ) were reported in parts per million with the residual solvent peak used as an internal standard (CHCl₃: δ = 7.26 ppm and CD₃CN: δ = 1.94 ppm for ¹H NMR spectra and CDCl₃: δ = 77.0 ppm and CD₃CN: δ = 1.32 ppm for ¹³C NMR spectra). The following abbreviations were used to explain the multiplicities: s (singlet), d (doublet), t (triplet), q (quadruplet), quint (quintet), sept (septuplet) m (multiplet), br (broad), the prefix app (apparent) was added when different coupling constants appeared accidentally equal. Coupling constants, J, are reported in Hz and with an accuracy of one unit of the last digit. HRMS analyses were recorded on an Applied Biosystems Sciex QSTAR Pulsar (hybrid quadrupole time-of-flight mass spectrometer) using positive electron spray. Infrared spectra were recorded on a Jasco FT-IR-460 plus spectrometer equipped with a Specac MKII Golden Gate Single Reflection Diamond ATR system and are reported in wave numbers (cm⁻¹). Gas chromatography (GC) analyses were performed on a spectrometer fitted with a Macherey-Nagel Optima delta-3-0.25 µm capillary column (20 m, 0.25 mm); gas carrier He 1.4 mL/min; injector: 220 °C split mode; detector: FID 280 °C, H₂ 35 mL/min, air 350 mL/min.

1.2 Materials

Unless otherwise stated, all commercial reagents were used as received. Solvents for the reactions (CH₂Cl₂, THF and n-Hexane) were filtered over columns of dried alumina under a positive pressure of argon. Solvents for extractions and flash chromatography were of technical grade and

were distilled prior to use. Triethylborane solution (1 M in n-hexane) was prepared from pure triethylborane.

2 List of Substrates

2.1 List of Alkenes

2.2 List of Radical Precursors

3 General Procedures

General Procedure A

To a solution of α -iodoester (1.0 equiv), alkene (2.0-5.0 equiv) in CH₂Cl₂ (10 mL/0.5 mmol of iodide) was added 4-*tert*-butylcatechol (3.0 equiv) followed by Et₃B (1.2 equiv, 1 M solution in *n*-hexane) while the needle was immersed in the solution. The resulting solution was stirred at room temperature in the presence of air under CaCl₂ guard tube. Consumption of the starting material was monitored by GC or TLC. Upon completion, the reaction mixture was filtered over a short pad of neutral alumina and was washed with Et₂O to trap catechol derivatives and boron-containing side products. The resulting crude filtrate was concentrated under reduced pressure and flash column chromatography on silica gel gave the desired product.

General Procedure B

To a solution of α -xanthate ester (1.0 equiv), alkene (2.0-3.0 equiv) in CH₂Cl₂ (10 mL/1.0 mmol of xanthate) was added 4-*tert*-butylcatechol (3.0 equiv) followed by Et₃B (2.5-3.0 equiv, 1 M solution in *n*-hexane) while the needle was immersed in the solution. The resulting solution was stirred at room temperature in the presence of air under CaCl₂ guard tube. Consumption of the starting material was monitored by GC or TLC. Upon completion, the reaction mixture was filtered over a short pad of neutral alumina and was washed with Et₂O or EtOAc to trap catechol derivatives and boron-containing side products. The resulting crude filtrate was concentrated under reduced pressure and flash column chromatography on silica gel gave the desired product.

General Procedure C

To a solution of α -iodoester (1.0 mmol) and enamide (5.0 mmol) in dichloromethane was added triethylborane (1.2 mmol, 1.2 mL, 1M in hexane) while the needle was immersed in the solution. The resulting solution was stirred open to air under CaCl₂ guard tube for 3 h. The resulting solution was stirred at room temperature in presence of air under CaCl₂ guard tube. Consumption of starting material was monitored by TLC. Upon completion, reaction mixture was directly concentrated under reduced pressure and flash column chromatography on silica gel gave the desired product.

4 Experimental Procedures and Spectroscopic Data

4.1 **Preparation of Substrates**

Cyclohex-2-enyl 2-(ethoxycarbonothioylthio) acetate (2'i)

To a solution of 1-clohex-2-enyl 2-chloroacetate¹ (2.2 g, 12.6 mmol, 1.0 equiv) in acetone (12.6 mL) was added portionwise potassium ethyl xanthogenate (2.4 g, 15.1 mmol, 1.2 equiv) at room temperature. The resulting solution was stirred for 4 h and then water was added. The mixture was then extracted with Et_2O

(3 x 100 mL), washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. Purification by flash column chromatography on silica gel (pentane/Et₂O 95:05) gave the desired product as a pale yellowish green oil (2.8 g, 10.8 mmol, 85%). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 5.96 – 5.87 (m, 1H), 5.65 (ddt, J = 10.0, 4.0, 2.1 Hz, 1H), 5.30 – 5.18 (m, 1H), 4.57 (q, J = 7.1 Hz, 2H), 3.84 (s, 2H), 2.13 – 1.86 (m, 2H), 1.84 – 1.63 (m, 3H), 1.64-1.5 (m, 1H), 1.35 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 212.8, 167.6, 133.5, 125.1, 70.7, 69.9, 38.3, 28.2, 25.0, 18.8, 13.8. HRMS (ESI) Calcd. For C₁₁H₁₆O₃NaS₂: 283.0433 [M+Na]⁺, Found: 283.0438.

1-Acetyl-3-vinylimidazolidin-2-one (44f)

To an oven-dried screw-cap vial fitted with magnetic stir bar was added *N*-acetylimidazolidin-2-one² (641 mg, 5.00 mmol, 1.0 equiv), CuI (47 mg, 0.25 mmol, 0.05 equiv), *N*,*N*'-dimethylethylenediamine (55 μ L, 0.50 mmol, 0.10 equiv), K₂CO₃ (1.38 g, 10.00 mmol, 2.0

equiv) and vinyl bromide (1 M in THF, 10.0 mL, 10.00 mmol, 2.0 equiv). The vial was tightly sealed using Teflon septum and heated to 90 °C for 24 h. The mixture was filtered through a pad of Celite and washed with EtOAc. The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography on silica gel (ethyl acetate/heptane = 2:3) to give the desired product **44f** as a white solid (600 mg, 3.89 mmol, 78% yield). ¹H NMR (300 MHz, CD₃CN) δ (ppm) 6.94 (dd, J = 15.9, 9.1 Hz, 1H), 4.46 – 4.32 (m, 2H), 3.84 – 3.74 (m, 2H), 3.56 – 3.46 (m, 2H), 2.40 (s, 3H). ¹³C NMR (75 MHz, CD₃CN) δ (ppm) 171.1, 153.4, 130.6, 93.4, 40.3, 39.2, 23.8. IR (neat, cm⁻¹): 2972, 2911, 1722, 1677, 1630, 1474, 1430, 1393, 1360, 1302, 1274,

¹ Soulard, V.; Villa, G.; Vollmar, D. P.; Renaud, P. J. Am. Chem. Soc. 2018, 140, 155.

² Hall Jr., H. K.; Schneider, A. K. J. Am. Chem. Soc. 1958, 80, 6409.

1257, 1209, 1173, 1101, 1035, 1000, 975, 964, 924, 860, 842, 744, 609, 598, 587, 441. HRMS (ESI) Calcd for C₇H₁₁O₂N₂: 155.0815 [M+H]⁺, Found: 155.0809. mp: 52.3-53.8 °C.

3-(Cyclohex-1-en-1-yl)oxazolidin-2-one (44k)

A mixture of oxazolidin-2-one (871 mg, 10.0 mmol, 1.0 equiv), cyclohexanone (1.96 g, 20.0 mmol, 2.0 equiv), and (d,l)-camphorsulfonic acid (232 mg, 1.0 mmol, 0.1 equiv) in toluene was refluxed for 15 h with Dean-Stark set up to remove water. The

organic layer was successively washed with NaHCO₃ and dried with Na₂SO₄. Flash chromatography on silica gel (TBME/pentane = 3:2) gave the desired product **44k** as a white solid (121 mg, 0.72 mmol, 7% yield). The spectra data are in agreement with the literature report.³ ¹H NMR (300 MHz, CD₃CN) δ (ppm) 5.33 – 5.29 (m, 1H), 4.30 – 4.19 (m, 2H), 3.76 – 3.65 (m, 2H), 2.47 – 2.41 (m, 2H), 2.13 – 2.05 (m, 2H), 1.73 – 1.62 (m, 2H), 1.62 – 1.51 (m, 2H). ¹³C NMR (75 MHz, CD₃CN) δ (ppm) 156.2, 136.4, 112.3, 62.5, 463, 26.5, 24.8, 23.4, 22.7. IR (neat, cm⁻¹): 2931, 2909, 2852, 2833, 1724, 1651, 1478, 1405, 1345, 1321, 1286, 1258, 1223, 1171, 1111, 1078, 1046, 1001, 909, 845, 832, 791, 752, 705. HRMS (ESI) Calcd for C₉H₁₄O₂N: 168.1019 [M+H]⁺, Found: 168.1015. mp: 42.8-44.7 °C.

(S)-4-Phenyl-3-(prop-1-en-2-yl) oxazolidin-2-one (61a)

CuI (116 mg, 0.61 mmol, 0.05 equiv), (S)-4-phenyloxazolidin-2-one (2.00 g, 12.20 mmol, 1.0 equiv), potassium carbonate (3.37 mg, 24.4 mmol, 2.0 equiv) were charged successively into a two neck round bottom flask under nitrogen atmosphere. Then N, N'-dimethylethylenediamine (130 µL, 107.3 mg, 1.22 mmol, 0.1

equiv), 2-bromoprop-1-ene (2.94 g, 24.40 mmol, 2.0 equiv), toluene (12.0 mL) were added. Then the reaction mixture was heated to reflux for 2 days. Upon completion, the reaction mixture was cooled down to room temperature and filtered over a short pad of silica and washed with ether. The filtrate was concentrated under reduce pressure to give the crude mixture. Flash chromatography on silica gel with 10-35% ether in pentane afforded the desired product **61a** as a white solid (1.40 g, 6.89 mmol, 56%). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.44 – 7.31 (m, 3H), 7.30 – 7.24 (m, 2H), 5.09 (dd, J = 8.8, 5.6 Hz, 1H), 4.65 (t, J = 8.7 Hz, 1H), 4.42 (d, J = 4.3 Hz, 2H), 4.07 (dd, J = 8.6, 5.6 Hz, 1H), 2.11 (d, J = 0.9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 155.5, 139.0, 138.9, 129.3, 128.7, 125.9, 101.9, 69.6, 60.6, 20.5. HRMS (ESI) Calcd. for C₁₂H₁₄O₂N: 204.1019 [M+H]⁺, Found: 204.1018.

³ Pan, X.; Cai, Q.; Ma, D. Org. Lett. 2004, 6, 1809.

(S)-4-Benzyl-3-(prop-1-en-2-yl) oxazolidin-2-one (61b)

CuI (47.6 mg, 0.25 mmol, 0.05 equiv), (S)-4-benzyloxazolidin-2-one (885 mg, 5.0 mmol, 1.0 equiv), potassium carbonate (1350.0 mg, 10.0 mmol, 2.0 equiv) were charged successively into a two neck round bottom flask under

nitrogen atmosphere. Then *N,N'*-dimethylethylenediamine (55.0 µL, 44.0 mg, 0.5 mmol, 0.1 equiv), 2-bromoprop-1-ene (900.0 mg, 7.5 mmol, 1.5 equiv), toluene (5.0 mL) were added. Then the reaction mixture was heated to reflux for 28 h. Upon completion, the reaction mixture was cooled down to room temperature and filtered over a short pad of silica and washed with ether. The filtrate was concentrated under reduce pressure to give the crude mixture. Flash chromatography on silica gel with 10-35% ether in pentane afforded the desired product **61b** as a white solid (920 mg, 4.23 mmol, 85%). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.38 – 7.23 (m, 3H), 7.20 – 7.13 (m, 2H), 4.74 (s, 1H), 4.68 (d, *J* = 0.6 Hz, 1H), 4.36 – 4.25 (m, 1H), 4.19 (t, *J* = 8.2 Hz, 1H), 4.09 (dd, *J* = 8.7, 4.0 Hz, 1H), 3.21 (dd, *J* = 13.8, 3.2 Hz, 1H), 2.75 (dd, *J* = 13.8, 9.3 Hz, 1H), 2.20 (d, *J* = 0.9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 154.9, 139.1, 135.6, 129.3, 129.0, 127.3, 101.3, 65.8, 57.0, 37.2, 20.6. HRMS (ESI) Calcd. for C₁₃H₁₆O₂N: 218.1176 [M+H]⁺, Found: 218.1174.

(S)-4-Isopropyl-3-(prop-1-en-2-yl)oxazolidin-2-one (61c)

To an oven-dried screw-cap vial fitted with magnetic stirring bar was added (*S*)-4-isopropyloxazolidin-2-one (1.29 g, 10.00 mmol, 1.0 equiv), 2-bromopropene (1.78 mL, 20.00 mmol, 2.0 equiv), CuI (95 mg, 0.50 mmol, 0.05 equiv), N,N'-dimethylethylenediamine (110 μ L, 1.00 mmol, 0.10 equiv), K₂CO₃ (2.76 g, 20.00 mmol, 2.0 equiv) and

THF (10 mL). The vial was tightly sealed using Teflon septum and heated to 90 °C for 44 h. The mixture was filtered through a pad of Celite and washed with EtOAc. The filtrate was concentrated under reduced pressure and the residue was purified by flash chromatography on silica gel (ethyl acetate/heptane = 3:7) to give the desired product **61c** as a colorless oil (1.63 g, 9.63 mmol, 96% yield). ¹H NMR (300 MHz, CD₂Cl₂) δ 4.73 – 4.66 (m, 2H), 4.28 – 4.19 (m, 1H), 4.14 – 4.02 (m, 2H), 2.22 (ddp, *J* = 10.2, 7.0, 3.2 Hz, 1H), 2.08 (d, *J* = 1.3 Hz, 3H), 0.87 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (75 MHz, CD₂Cl₂) δ (ppm) 139.3, 103.3, 62.7, 60.3, 27.8, 20.5, 17.9, 14.5. IR (neat, cm⁻¹): 2963, 2876, 1743, 1363, 1402, 1321, 1215, 1182, 1160, 1119, 1060, 982, 859, 836, 768, 753, 728, 645, 633. HRMS (ESI) Calcd for C₉H₁₆O₂N: 170.1176 [M+H]⁺, Found: 170.1169. [α]_D = -42.4 (c = 0.224, CHCl₃).

(S,E)-3-(But-1-en-1-yl)-4-phenyloxazolidin-2-one (61e)

A catalytic amount of p-toluenesulfonic acid and (S)-4-phenyloxazolidin-2-one (1.63 g, 10.0 mmol, 1.0 equiv) was added to a stirred solution of butanal (793 mg, 11.0 mmol, 1.1 equiv) in benzene (50 mL). The reaction mixture was fitted with a Dean-Stark trap and condenser. The solution was heated to reflux over 20 h. The reaction mixture was cooled to room temperature

and concentrated under reduced pressure. The crude material was purified by flash chromatography on silica gel (gradient of diethyl ether/pentane = 2:5 to 1:2) to afford the desired chiral product **61e** as a white solid (1.26 g, 5.8 mmol, 58% yield). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.46 – 7.31 (m, 3H), 7.29 – 7.22 (m, 2H), 6.58 (dt, J = 14.5, 1.5 Hz, 1H), 5.00 (dd, J = 9.0, 5.3 Hz, 1H), 4.75 – 4.62 (m, 2H), 4.11 (dd, J = 8.6, 5.3 Hz, 1H), 1.99 – 1.84 (m, 2H), 0.86 (t, J = 7.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 156.0, 138.5, 129.4, 128.8, 126.0, 122.1, 115.4, 70.6, 58.8, 23.3, 14.2. IR (neat, cm⁻¹): 2962, 2916, 2872, 1742, 1670, 1457, 1403, 1320, 1214, 1130, 1073, 1038, 942, 754, 698. HRMS (ESI) Calcd for C₁₃H₁₆O₂N: 218.1176 [M+H]⁺, Found: 218.1175. mp: 38.6-38.8 °C. [α]_D = 106.2 (c = 0.416, CHCl₃).

(4S,5R)-3-((E)-But-1-en-1-yl)-4,5-diphenyloxazolidin-2-one (61g)

A catalytic amount of *p*-toluenesulfonic acid and (4*S*, 5R)-4,5-diphenyloxazolidin-2-one (622 mg, 2.60 mmol, 1.0 equiv) was added to a stirred solution of butanal (206 mg, 2.86 mmol, 1.1 equiv) in benzene (25 mL). The reaction mixture was fitted with a Dean-Stark trap and condenser. The solution was heated to reflux over 16 h. The reaction mixture was cooled to room temperature

and concentrated under reduced pressure. The crude material was purified by flash chromatography on silica gel (gradient of diethyl ether/pentane = 1:4 to 1:3) to afford the desired chiral enamine **61g** as a white solid (358 mg, 1.22 mmol, 47% yield). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.15 – 7.02 (m, 6H), 6.97 (tt, J = 4.7, 2.4 Hz, 2H), 6.82 (qd, J = 4.0, 1.7 Hz, 2H), 6.68 (dt, J = 14.5, 1.5 Hz, 1H), 5.89 (d, J = 8.1 Hz, 1H), 5.21 (d, J = 8.2 Hz, 1H), 4.67 (dt, J = 14.5, 6.7 Hz, 1H), 1.93 (pd, J = 7.4, 1.5 Hz, 2H), 0.86 (t, J = 7.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 155.6, 134.0, 133.7, 128.34, 128.30, 128.2, 128.0, 127.2, 126.5, 122.0, 115.8, 80.5, 63.9, 23.2, 14.2. IR (neat, cm⁻¹): 2969, 2955, 2920, 2868, 1729, 1673, 1456, 1409, 1375, 1361, 1341, 1247, 1214, 1138, 1095, 1074, 1034, 1025, 1014, 940, 885, 828, 760, 716, 692, 568. HRMS (ESI) Calcd for C₁₉H₂₀O₂N: 294.1489 [M+H]⁺, Found: 294.1482. mp: 155.1-157.3 °C. [α]_D = -20.0 (c = 0.416, dichloromethane).

4.2 Radical Addition Products

4-Ethoxy-4-oxobutyl benzoate (3)

Following general procedure A, the reaction was carried out with ethyl iodoacetate **2a** (107 mg, 0.50 mmol), vinyl benzoate **1a** (370 mg, 0.35 mL, 2.50 mmol), 4-*tert*-butylcatechol (498 mg, 3.00 mmol), Et₃B (0.6 mL, 0.60 mmol). Flash column

chromatography on silica gel (pentane/Et₂O = 88:12) gave the desired product **3** as a colorless oil (75%). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 8.10-7.96 (m, 2H), 7.60-7.50(m, 1H), 7.48-7.38 (m, 2H), 4.36 (t, *J* = 6.3 Hz, 2H), 4.12 (q, *J* = 7.11 Hz, 2H), 2.48 (t, *J* = 7.3 Hz, 2H), 2.11 (quin, 2H), 1.24 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 172.9, 166.5, 133.0, 130.2, 129.6, 128.4, 64.0, 60.6, 31.0, 24.2, 14.2. IR (neat, cm⁻¹): 3066, 2980, 2898, 1716, 1270, 1174, 1111, 1070, 1025, 708. HRMS (ESI) Calcd. for C₁₃H₁₇O₄: 237.1121 [M+H]⁺, Found: 237.1124.

4-(Benzyloxy)-4-oxobutyl benzoate (4)

Following general procedure A, the reaction was carried out with benzyl 2-iodoacetate **2b** (139 mg, 0.50 mmol), vinyl benzoate **1a** (370 mg, 0.35 mL, 2.50 mmol), 4-*tert*-butylcatechol (499 mg, 3.00 mmol), Et₃B (0.6 mL, 0.60 mmol). Flash column chromatography

on silica gel (pentane/Et₂O = 90:10) gave the desired product **4** as a colorless oil (121 mg, 81% yield). Spectral data are in accordance with the literature report.⁴ ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.98-7.91 (m, 2H), 7.51-7.43 (m, 1H), 7.39-7.31 (m, 2H), 7.29-7.22 (m, 5H), 5.03, (s, 2H), 4.29 (t, *J* = 6.3 Hz, 2H), 2.47 (t, *J* = 7.4 Hz, 2H), 2.06 (quin, 2H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 172.7, 166.5, 135.8, 133.0, 130.2, 129.6, 128.6, 128.4, 128.3, 128.3 66.5, 63.9, 31.0, 24.2. HRMS (ESI) Calcd. for C₁₈H₁₉O₄: 299. 1278 [M+H]⁺, Found: 299.1274.

4-Oxo-4-phenoxybutyl benzoate (5)

Following general procedure A, the reaction was carried out with phenyl 2-iodoacetate **2c** (131 mg, 0.50 mmol), vinyl benzoate **1a** (370 mg, 0.35 mL, 2.50 mmol), 4-*tert*-butylcatechol (498 mg, 3.00 mmol), Et₃B (0.6 mL, 0.60 mmol). Flash column

chromatography on silica gel (pentane/Et₂O = 90:10) gave the desired product **5** as a colorless oil (90 mg, 64% yield). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 8.12 – 8.01 (m, 2H), 7.61 – 7.53 (m, 1H), 7.52 – 7.30 (m, 4H), 7.26 – 7.17 (m, 1H), 7.13 – 7.04 (m, 2H), 4.46 (t, *J* = 6.2 Hz, 2H), 2.76

⁴ Studer, A.; Amrein, S. Angew. Chem. Int. Ed. 2000, 39, 3080.

(t, J = 7.3 Hz, 2H), 2.34 – 2.15 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 171.4, 166.6, 150.6, 133.1, 130.1, 129.7, 129.5, 128.4, 125.9, 121.6, 63.8, 31.1, 24.2. IR (neat, cm⁻¹): 2962, 1754, 1714, 1592, 1491, 1451, 1314, 1269, 1194, 1138, 1110, 1069, 1025, 936, 809, 751, 708, 687. HRMS (ESI) Calcd. for C₁₇H₁₇O₄: 285.1121 [M+H]⁺, Found : 285.1116.

Benzyl 4-acetoxybutanoate (6)

Following general procedure A, the reaction was carried out with benzyl 2-iodoacetate **2b** (139 mg, 0.50 mmol), vinyl acetate **1b** (215.2 mg, 0.23 mL, 2.50 mmol), 4-*tert*-butylcatechol (498 mg, 3.00 mmol), Et₃B (0.6 mL, 0.60 mmol). Flash column chromatography on silica gel

(pentane/Et₂O = 80:20) gave the desired product **6** as a colorless oil (91 mg, 77% yield). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.32-7.23 (m, 5H), 5.05 (s, 2H), 4.03 (t, *J* = 6.3 Hz, 2H), 2.38 (t, *J* = 7.4 Hz, 2H), 1.95 (s, 3H), 1.92 (quin, 2H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 172.7, 171.0, 135.9, 128.6, 128.3, 128.2, 66.4, 63.4, 30.8, 24.0, 20.9. IR (neat, cm⁻¹): 2956, 2360, 1731, 1455, 1366, 1230, 1162, 1042, 800, 737, 697, 631, 620, 605. HRMS (ESI) Calcd. for C₁₃H₁₇O₄: 237.1121 [M+H]⁺, Found : 237.1123.

Phenyl 4-acetoxybutanoate (7)

Following general procedure A, the reaction was carried out with phenyl 2-iodoacetate **2c** (131 mg, 0.50 mmol), vinyl acetate **1b** (215 mg, 0.23 mL, 2.50 mmol), 4-*tert*-butylcatechol (498 mg, 3.00 mmol), Et₃B (0.6 mL, 0.60 mmol). Flash column

chromatography on silica gel (pentane/Et₂O = 80:20) gave the desired product **7** as a colorless oil (70 mg, 0.32 mmol, 63%). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.44 – 7.30 (m, 2H), 7.30 – 7.17 (m, 1H), 7.09 (dt, *J* = 8.4, 1.2 Hz, 2H), 4.25 – 4.10 (m, 2H), 2.74 – 2.57 (m, 2H), 2.19 – 2.00 (m, 2H), 2.07 (s. 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 171.4, 171.1, 150.6, 129.5, 125.9, 121.5, 63.3, 31.0, 24.1, 20.9. IR (neat, cm⁻¹): 2962, 1734, 1592, 1493, 1364, 1231, 1192, 1137, 1041, 931, 810, 751, 689. HRMS (ESI) Calcd. for C₁₂H₁₅O₄: 223.0965 [M+H]⁺, Found : 223.0961.

4-Ethoxy-3-methyl-4-oxobutyl benzoate (8)

Following general procedure A, the reaction was carried out with ethyl 2-iodopropanoate **2d** (114 mg, 0.50 mmol), vinyl benzoate **1a** (370 mg, 0.35 mL, 2.50 mmol), 4-*tert*-butylcatechol (498 mg, 3.00 mmol), Et₃B (0.6 mL, 0.60 mmol). Flash column

chromatography on silica gel (pentane/Et₂O = 90:10) gave the desired product **8** as a colorless oil (64 mg, 0.26 mmol, 51% yield). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 8.03-7.92 (m, 2H),

7.54-7.44 (m, 1H), 7.43-7.32 (m, 2H), 4.29 (td, J = 6.4, 1.3 Hz, 2H), 4.04 (qd, J = 7.3, 1.38 Hz, 2H), 2.59 (sex, 1H), 2.21-2.05 (m, 1H), 1.90-1.74 (m, 1H), 1.15 (t, J = 7.1 Hz, 3H), 1.18 (d, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 175.9, 166.5, 132.9, 130.2, 129.6, 128.3, 62.8, 60.5, 36.7, 32.4, 17.2, 14.2. IR (neat, cm⁻¹): 2976, 1716, 1601, 1451, 1376, 1314, 1269, 1176, 1139, 1109, 1070, 1025, 858, 806, 708. HRMS (ESI) Calcd. for C₁₄H₁₉O₄: 251.1278 [M+H]⁺, Found: 251.1281.

2-(2-Oxotetrahydrofuran-3-yl)ethyl benzoate (9)

Following general procedure A, the reaction was carried out with 3-iododihydrofuran-2(3*H*)-one **2e** (106 mg, 0.50 mmol), vinyl benzoate **1a** (370 mg, 0.35 mL, 2.50 mmol), 4-*tert*-butylcatechol (500 mg, 3.00 mmol), Et₃B (0.6 mL, 0.60 mmol). Flash column chromatography on silica gel (pentane/Et₂O = 65:35) gave the desired

product **9** as a colorless oil (60 mg, 0.26 mmol, 52% yield). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.99-7.93 (m, 2H), 7.55-7.47 (m, 1H), 7.43-7.34 (m, 2H), 4.40 (t, J = 6.4 Hz, 2H), 4.32 (td, J = 8.9, 2.3 Hz, 1H), 4.14 (ddd, J = 10.1, 9.3, 6.5 Hz, 1H), 2.66 (dtd, J = 10.8, 8.9, 4.8 Hz, 1H), 2.51-2.28(m, 2H), 2.08-1.78 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 178.6, 166.4, 133.1, 129.9, 129.6, 128.5, 66.5, 62.6, 36.8, 29.6, 28.8. IR (neat, cm⁻¹): 2962, 2910, 1765, 1712, 1601, 1451, 1375, 1314, 1269, 1211, 1160, 1107, 1070, 1023, 938, 807, 709, 687. HRMS (ESI) Calcd. for C₁₃H₁₅O₄: 235.0965 [M+H]⁺, Found : 235.0966.

4-Ethoxy-3,3-difluoro-4-oxobutyl benzoate (10)

Following general procedure A, the reaction was carried out with ethyl 2,2-difluoro-2-iodoacetate **2f** (125 mg, 0.50 mmol), vinyl benzoate **1a** (370 mg, 0.35 mL, 2.50 mmol), 4-*tert*-butylcatechol (498 mg, 3.00 mmol), Et₃B (0.6 mL, 0.60 mmol). Flash column

chromatography on silica gel (pentane/Et₂O = 90:10) gave the desired product **10** as a colorless oil (72 mg, 0.26 mmol, 53% yield). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.97-7.90 (m, 2H), 7.54-7.45 (m, 1H), 7.41-7.32 (m, 2H), 4.46 (t, *J* = 6.18 Hz, 2H), 4.15 (q, *J* = 7.17, 2H), 2.53 (tt, *J* = 15.72, 6.18 Hz, 2H), 1.19 (t, *J* = 7.17 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 166.1, 163.7, 133.2, 129.6, 128.4, 114.8 (t, *J* = 251.1 Hz), 63.1, 58.0 (t, *J* = 5.9 Hz), 34.08 (t, *J* = 23.9 Hz), 13.8. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -105.2 (s). IR (neat, cm⁻¹): 2983, 1761, 1721, 1598, 1452, 1374, 1315, 1270, 1194, 1094, 1025, 841, 709, 687. HRMS (ESI) Calcd. for C₁₃H₁₅O₄F₂: 273.0933 [M+H]⁺, Found : 273.0934.

Benzyl 4-acetoxypentanoate (11)

Following general procedure A, the reaction was carried out with benzyl 2-iodoacetate **2b** (139 mg, 0.50 mmol), isopropenyl acetate **1c** (250 mg, 0.27 mL, 2.50 mmol), 4-*tert*-butylcatechol (498 mg, 3.00 mmol), Et₃B (0.6 mL, 0.60 mmol). Flash column chromatography on

silica gel (pentane/Et₂O = 85:15) gave the desired product **11** as a colorless oil (104 mg, 0.42 mmol, 83%). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.33-7.23 (m, 5H), 5.04 (s, 2H), 4.85 (sex, 1H), 2.43-2.24 (m, 2H), 1.93 (d, *J* = 1.0 Hz, 3H), 1.89-1.79 (m, 2H), 1.15 (dd, *J* = 6.3, 1.0 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 172.9, 170.7, 136.0, 128.7, 128.4, 70.1, 66.5, 30.9, 30.5, 21.3, 19.9. IR (neat, cm⁻¹): 2978, 2355, 1729, 1455, 1372, 1237, 1164, 1131, 1073, 961, 746, 697, 607. HRMS (ESI) Calcd. for C₁₄H₁₉O₄: 251.1278 [M+H]⁺, Found : 251.1275.

Phenyl 4-acetoxypentanoate (12)

Following general procedure A, the reaction was carried out with phenyl 2-iodoacetate 2c (131 mg, 0.50 mmol), isopropenyl acetate 1c (250 mg, 0.27 mL, 2.50 mmol), 4-*tert*-butylcatechol (500 mg, 3.00 mmol), Et₃B (0.6 mL, 0.60 mmol). Flash column

chromatography on silica gel (pentane/Et₂O = 85:15) gave the desired product **12** as a colorless oil (110 mg, 0.47 mmol, 93%). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.35-7.25 (m, 2H), 7.21-7.10 (m, 1H), 7.04-6.95 (m, 2H), 4.93 (sex, 1H), 2.57-2.48 (m, 2H), 1.96 (d, *J* = 1.3 Hz, 3H), 1.95-1.87 (m, 2H), 1.20 (dd, *J* = 6.3, 1.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 171.5, 170.6, 150.7, 129.4, 125.8, 121.5, 69.8, 30.9, 30.5, 21.2, 19.9. IR (neat, cm⁻¹): 2978, 2355, 1755, 1731, 1592, 1493, 1456, 1372, 1238, 1193, 1129, 1070, 1023, 934, 813, 752, 689, 627. HRMS (ESI) Calcd. for C₁₃H₁₇O₄: 237.1121 [M+H]⁺, Found : 237.1124.

Benzyl 4-acetoxy-3-methylhexanoate (13)

Following general procedure A, the reaction was carried out with olefin $1d^5$ (192 mg, 1.50 mmol), benzyl iodoacetate 2b (138 mg, 0.5 mmol), *tert*-butylcatechol (249 mg, 1.50 mmol), Et₃B (0.6 mL, 0.60 mmol) in DCM (10 mL) and it took 1 h for the reaction to go to

completion. Flash chromatography on silica gel (gradient of pentane/diethyl ether = 9:1 to 7:1) gave the desired product **13** as a colorless oil (63 mg, 0.23 mmol, 45% yield, dr = 1:1). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.40 – 7.28 (m, 10H), 5.124 (s, 2H), 5.118 (s, 2H), 4.81 (ddd, J = 7.8, 5.7, 3.7 Hz, 1H), 4.74 (ddd, J = 7.6, 5.9, 4.8 Hz, 1H), 2.51 – 2.41 (m, 2H), 2.36 – 2.22 (m, 2H), 2.22 – 2.12 (m, 2H), 2.03 (s, 3H), 2.02 (s, 3H), 1.66 – 1.44 (m, 4H), 0.95 (d, J = 6.6, 3H), 0.94 (d,

⁵ Onishi, Y.; Nishimoto, Y.; Yasuda, M.; Baba, A. Org. Lett. 2011, 13, 2762.

J = 6.6, 3H), 0.88 (t, J = 7.4, 3H), 0.87 (t, J = 7.4, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 172.8, 172.6, 170.98, 170.97, 136.1, 128.7, 128.41, 128.40, 128.38, 78.4, 77.8, 66.44, 66.41, 38.2, 37.4, 33.4, 33.2, 24.5, 24.1, 21.2, 21.1, 16.7, 14.4, 10.2, 9.7. HRMS (ESI) Calcd for C₁₆H₂₃O₄: 279.1591 [M+H]⁺, Found: 279.1594.

Benzyl 2-(2-acetoxycyclopentyl)acetate (14)

Following general procedure A, the reaction was carried out with cyclopent-1-en-1-yl acetate **1e** (189 mg, 1.50 mmol), benzyl iodoacetate (135 mg, 0.50 mmol), *tert*-butylcatechol **2b** (249 mg, 1.50 mmol), Et₃B (0.6 mL, 0.60 mmol) in DCM (10 mL) and it took

2 h for the reaction to go to completion. Flash chromatography on silica gel (gradient of pentane/diethyl ether = 10:1 to 6:1) gave the desired product **14** as a colorless oil (100 mg, 0.36 mmol, 72% yield, dr = 1.3:1). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.44 – 7.30 (m, 10H), 5.22 (td, J = 5.1, 1.9 Hz, 1H, minor dia), 5.134 (s, 2H, major dia), 5.129 (s, 2H, minor dia), 4.82 (dt, J = 6.7, 4.7 Hz, 1H, major dia), 2.68 – 2.50 (m, 2H), 2.48 – 2.27 (m, 4H), 2.02 (s, 3H, major dia), 2.00 (s, 3H, minor dia), 2.06 – 1.94 (m, 3H), 1.83 – 1.56 (m, 7H), 1.55 – 1.38 (m, 1H), 1.36 – 1.20 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 172.7 (minor dia), 172.4 (major dia), 171.1 (major dia), 170.7 (minor dia), 136.09 (minor dia), 136.07 (major dia), 128.7 (major and minor dia), 128.42 (major and minor dia), 128.37 (major and minor dia), 80.4 (major dia), 77.5 (minor dia), 66.4 (minor dia), 66.39 (major dia), 30.2 (major dia), 29.7 (minor dia), 22.5 (major dia), 22.2 (minor dia), 21.3 (major dia), 21.2 (minor dia). HRMS (ESI) Calcd for C₁₆H₂₁N₄: 277.1434 [M+H]⁺, Found: 277.1438.

Benzyl 2-(2-acetoxycyclohexyl)acetate (15)

Following general procedure A, the reaction was carried out with cyclohex-1-en-1-yl acetate **1f** (210 mg, 1.50 mmol), benzyl iodoacetate **2b** (135 mg, 0.50 mmol), *tert*-butylcatechol (249 mg, 1.50 mmol), Et₃B (0.6 mL, 0.60 mmol) in DCM (10 mL) and it took

4 h for the reaction to go to completion. Flash chromatography on silica gel (gradient of pentane/diethyl ether = 15:1 to 6:1) gave the desired product **15** as a colorless oil (67 mg, 0.23 mmol, 46% yield, dr = 1.5:1). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.40 – 7.29 (m, 10H), 5.16 – 5.05 (m, 4H), 5.00 (p, J = 2.2 Hz, 1H of major dia), 4.51 – 4.43 (m, 1H of minor dia), 2.50 (dd, J = 15.2, 6.3 Hz, 1H of minor dia), 2.40 (dd, J = 15.2, 6.3 Hz, 1H of major dia), 2.27 (d, J = 7.8 Hz, 1H of minor dia), 2.24 – 2.06 (m, 3H), 2.06 – 2.00 (m, 1H), 2.02 (s, 3H of major dia), 1.97 (s, 3H of minor dia), 1.93 – 1.79 (m, 2H), 1.79 – 1.11 (m, 1H of minor dia), 1.70 – 1.61 (m, 2H), 1.58 –

1.41 (m, 6H), 1.40 – 1.23 (m, 3H), 1.23 – 1.01 (m, 1H of minor dia). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 172.7 (minor dia), 172.6 (major dia), 170.8 (minor dia), 170.7 (major dia), 136.12 (minor dia), 136.08 (major dia), 128.7, 128.4, 128.37, 128.35, 76.6 (minor dia), 72.2 (major dia), 66.4 (major dia), 66.3 (minor dia), 39.4, 38.2, 37.1, 36.8, 31.9, 31.3, 29.7, 27.4, 25.2, 24.6, 21.3, 20.9. HRMS (ESI) Calcd for C₁₇H₂₃O₄: 291.1591 [M+H]⁺, Found: 291.1583.

Benzyl 4-((diethoxyphosphoryl)oxy)butanoate (16)

Following general procedure A, the reaction was carried out with olefin $1g^6$ (270 mg, 1.50 mmol), benzyl iodoacetate **2b** (138 mg, 0.5 mmol), *tert*-butylcatechol (249 mg, 1.50 mmol), Et₃B (0.5 mL, 0.60 mmol) in DCM (10 mL) and it took 3 h for the reaction to go to

completion. Flash chromatography on silica gel (gradient of pentane/ethyl acetate = 1:1 to 1:3) gave the desired product **16** as a colorless oil (111 mg, 0.34 mmol, 67% yield). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.34 (d, J = 3.4 Hz, 5H), 5.12 (s, 2H), 4.14 – 4.04 (m, 6H), 2.50 (t, J = 7.4 Hz, 2H), 2.02 (dddd, J = 13.6, 7.3, 6.1, 1.1 Hz, 2H), 1.32 (td, J = 7.1, 1.0 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 172.7, 136.0, 128.7, 128.4, 128.3, 66.50, 66.48 (d, J = 5.9 Hz), 63.9 (d, J = 5.9 Hz), 30.3, 25.7 (d, J = 7.2 Hz), 16.3 (d, J = 6.7 Hz). IR (neat, cm⁻¹): 2981, 1733, 1260, 1164, 1019, 971, 740, 698. HRMS (ESI) Calcd for C₁₅H₂₄O₆P: 331.1305 [M+H]⁺, Found: 331.1310.

Ethyl 4-(phenylthio) butanoate (18)

Following general procedure A, the reaction was carried out with ethyl 2-iodoacetate **2a** (107 mg, 0.50 mmol), phenyl vinyl sulfide **17a** (204 mg, 1.50 mmol), 4-*tert*-butylcatechol (250 mg, 1.50 mmol), Et₃B (0.6 mL, 0.6 mmol). Flash chromatography on silica

gel (pentane/Et₂O = 96:4) gave the desired product **18** as a colorless oil (106 mg, 0.47 mmol, 95%). Physical and spectral data were in accordance with the literature.⁷ ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.36-7.26 (m, 4H), 7.15-7.07 (m, 1H), 4.13 (q, *J* = 7.1 Hz, 2H), 2.97 (t, *J* = 7.1 Hz, 2H), 2.46 (t, *J* = 7.3 Hz, 2H), 1.96 (quin, 2H), 1.25 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 172.9, 136.1, 129.4, 128.9, 126.0, 60.4, 33.0, 32.9, 24.4, 14.2. IR (Neat, cm⁻¹): 2963, 1728, 1583, 1480, 1438, 1373, 1278, 1202, 1135, 1024, 736, 690. HRMS (ESI) Calcd. for C₁₂H₁₆O₂NaS: 247.0763 [M+Na]⁺, Found : 247.0767.

Benzyl 4-(phenylthio)butanoate (19)

⁶ Kumpulainen, H.; Järvinen, T.; Saari, R.; Lehtonen, M.; Vepsäläinen, J. J. Org. Chem. 2005, 70, 9056.

⁷ Giese, B.; Horler, H.; Leising, M. Chem. Ber. 1986, 119, 444.

Gram scale synthesis:

Following general procedure A, the reaction was carried out with benzyl 2-iodoacetate **2b** (1.00 g, 3.62 mmol), phenyl vinyl sulfide **17a** (1.48 g 10.86 mmol), 4-*tert*-butylcatechol (1.80 g, 10.86 mmol),

Et₃B (4.3 mL, 4.34 mmol). Flash chromatography on silica gel (pentane/Et₂O = 97:3) gave the desired product **19** as a colorless oil (1.02 g, 3.56 mmol, 98%). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.32-7.21 (m, 9H), 7.17-7.12 (m, 1H), 5.08 (s, 2H), 2.93 (t, J = 7.05 Hz, 2H), 2.49 (t, J = 7.23 Hz, 2H), 1.95 (quin, 2H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 172.8, 136.1, 135.9, 129.4, 128.9, 128.6, 128.3, 128.2, 126.1, 66.4, 33.0, 32.9, 24.4. IR (neat, cm⁻¹): 2945, 2360, 1731, 1583, 1480, 1438, 1382, 1164, 1136, 1024, 1001, 735, 690. HRMS (ESI) Calcd. for C₁₇H₁₉O₂S: 287.1100 [M+H]⁺, Found : 287.1103.

Phenyl 4-(phenylthio) butanoate (20)

Following general procedure A, the reaction was carried out with phenyl 2-iodoacetate 2c (131 mg, 0.50 mmol), phenyl vinyl sulfide 17a (204 mg, 1.50 mmol), 4-*tert*-butylcatechol (249 mg, 1.50 mmol), Et₃B (0.6 mL, 0.60 mmol). Flash chromatography on

silica gel (pentane/Et₂O = 97:3) gave the desired product **20** as a colorless oil (120 mg, 0.44 mmol, 88%). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.37-7.31 (m, 4H), 7.29-7.22 (m, 2H), 7.22-7.13 (m, 2H), 7.06-7.02 (m, 2H), 3.02 (t, *J* = 7.0 Hz, 2H), 2.70 (t, *J* = 7.2 Hz, 2H), 2.04 (quin, 2H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 171.6, 150.7, 136.0, 129.6, 129.5, 129.1, 126.3, 125.9, 121.6, 33.1, 33.0, 24.4. IR (neat, cm⁻¹): 2957, 1755, 1591, 1491, 1480, 1438, 1360, 1191, 1161, 1121, 1069, 1024, 923, 810, 736, 687. HRMS (ESI) Calcd. For C₁₆H₁₆O₂NaS: 295.0763 [M+Na]⁺, found : 295.0757.

Ethyl 2-methyl-4-(phenylthio)butanoate (21)

Following general procedure A, the reaction was carried out with ethyl 2-iodopropanoate 2d (114mg, 0.50 mmol), phenyl vinyl sulfide 17a (204 mg, 1.50 mmol), 4-*tert*-butylcatechol (249 mg, 1.50 mmol), Et₃B (0.6 mL, 0.60 mmol). Flash chromatography on

silica gel (pentane/Et₂O = 96:4) gave the desired product **21** as a colorless oil (61 mg, 0.26 mmol, 51%). Physical and spectral data were in accordance with the literature.⁸ ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.35-7.26 (m, 4H), 7.21-7.15 (m, 1H), 4.13 (q, *J* = 7.08 Hz, 2H), 3.00-2.85 (m,

⁸ Curran, D. P.; Chen, M. H.; Spletzer, E.; Seong, C. M.; Chang, C. T. J. Am. Chem. Soc. 1989, 111, 8872.

2H), 2.68-2.57 (sex, 1H), 2.09-1.96 (m, 1H), 1.78-1.67 (m, 1H), 1.25 (t, J = 7.05, 3H), 1.17 (d, J = 7.02 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 175.9, 136.2, 129.2, 128.9, 125.9, 60.4, 38.6, 33.0, 31.3, 17.0, 14.2. IR (neat, cm⁻¹): 2973, 2936, 1726, 1584, 1438, 1376, 1261, 1191, 1153, 1091, 1024, 858, 736, 690. HRMS (ESI) Calcd. for C₁₃H₁₈O₂NaS: 261.0920 [M+Na]⁺, Found : 261.0921.

3-(2-(Phenylthio)ethyl)dihydrofuran-2(3*H*)-one (22)

Following general procedure A, the reaction was carried out with 3-iododihydrofuran-2(3H)-one **2e** (106 mg, 0.50 mmol), phenyl vinyl sulfide **17a** (204 mg, 1.50 mmol), 4-*tert*-butylcatechol (250 mg, 1.50 mmol), Et₃B (0.6 mL, 0.60 mmol). Flash chromatography

on silica gel (pentane/Et₂O = 80:20) gave the desired product **22** as a colorless oil (89 mg, 0.40 mmol, 80%). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.31 – 7.25 (m, 2H), 7.25 – 7.17 (m, 2H), 7.16 – 7.08 (m, 1H), 4.25 (td, *J* = 8.8, 2.5 Hz, 1H), 4.09 (td, *J* = 9.5, 6.6 Hz, 1H), 3.09 – 2.89 (m, 2H), 2.76 – 2.61 (m, 1H), 2.39 – 2.26 (m, 1H), 2.18 – 2.02 (m, 1H), 1.94 – 1.76 (m, 1H), 1.68 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 178.9, 135.5, 129.6, 129.1, 126.4, 66.5, 38.0, 31.5, 29.9, 28.8. IR (neat, cm⁻¹): 2911, 1759, 1582, 1480, 1437, 1374, 1278, 1179, 1143, 1088, 1022, 965, 737, 690. HRMS (ESI) Calcd. for C₁₂H₁₅O₂S: 223.0787 [M+H]⁺, Found : 223.0791.

Ethyl 2,2-difluoro-4-(phenylthio)butanoate (23)

Following general procedure A, the reaction was carried out with ethyl 2,2-difluoro-2-iodoacetate **2f** (125 mg, 0.50 mmol), phenyl vinyl sulfide **17a** (204 mg, 1.50 mmol), 4-*tert*-butylcatechol (250 mg, 1.50 mmol), Et₃B (0.6 mL, 0.60 mmol). Flash

chromatography on silica gel (pentane/Et₂O = 80:20) gave the desired product **23** as a colorless oil (102 mg, 0.39 mmol, 79%). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.32-7.27 (m, 2H), 7.27-7.20 (m, 2H), 7.20-7.13 (m, 1H), 4.24 (q, *J* = 7.1 Hz, 2H), 2.97 (m, 2H), 2.43-2.21 (m, 2H), 1.26 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 163.7, 134.8, 129.8, 129.2, 126.7, 115.1 (t, *J* = 249.7 Hz), 63.1, 34.8 (t, *J* = 23.2 Hz), 25.7 (t, *J* = 5.25 Hz), 13.9. ¹⁹F NMR (376 MHz, CDCl₃) δ (ppm) -106.2 (s). IR (neat, cm⁻¹): 2983, 1759, 1584, 1481, 1439, 1374, 1305, 1184, 1083, 1024, 943, 850, 737, 690, 636. HRMS (ESI) Calcd. for C₁₂H₁₅O₂F₂S: 261.0755 [M+H]⁺, Found : 261.0757.

Diethyl 2-(2-(phenylthio)ethyl) malonate (24)

Following general procedure A, the reaction was carried out with diethyl 2-bromomalonate **2g** (146 mg, 0.59 mmol), phenyl vinyl sulfide **7a** (142 mg, 0.14 mL, 2.00 mmol), 4-*tert*-butylcatechol (260 mg, 3.00 mmol), Et₃B (1.3 mL, 1.30 mmol). Flash chromatography

on silica gel (2-12% ether in pentane) gave the desired product **24** as a colorless oil (151 mg, 0.52 mmol, 88%). Spectral and physical data are in accordance with the literature.⁹ ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.32 – 7.25 (m, 2H), 7.25 – 7.17 (m, 2H), 7.16 – 7.08 (m, 1H), 4.20 – 4.04 (m, 4H), 3.52 (t, *J* = 7.2 Hz, 1H), 2.94 – 2.85 (m, 2H), 2.18-2.08 (m, 2H), 1.17 (t, *J* = 7.1 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 169.1, 135.7, 129.8, 129.1, 126.4, 61.7, 50.7, 31.5, 28.4, 14.2.

Benzyl 4-(phenylthio)pentanoate (25)

Following general procedure A, the reaction was carried out with olefin $7b^{10}$ (225 mg, 1.50 mmol), benzyl iodoacetate **2b** (138 mg, 0.5 mmol), *tert*-butylcatechol (249 mg, 1.50 mmol), Et₃B (0.6 mL, 0.60 mmol) in DCM (10 mL) and it took 2 h for the reaction to go to

completion (dichloromethane/pentane = 1:5 for TLC plate). Flash chromatography on silica gel (gradient of dichloromethane/pentane = 1:4 to 1:2) gave the desired product **25** as a colorless oil (120 mg, 0.40 mmol, 80% yield). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.42 – 7.31 (m, 7H), 7.31 – 7.22 (m, 3H), 5.12 (s, 2H), 3.23 (h, J = 6.7 Hz, 1H), 2.64 – 2.53 (m, 2H), 1.96 – 1.84 (m, 2H), 1.29 (d, J = 6.8 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 173.2, 136.1, 134.7, 132.5, 129.0, 128.7, 128.4, 128.3, 127.1, 66.4, 43.0, 31.8, 31.6, 21.3. IR (neat, cm⁻¹): 2958, 2919, 1731, 1583, 1454, 1438, 1378, 1154, 1114, 1089, 1023, 738, 692. HRMS (ESI) Calcd for C₁₈H₂₁O₂S: 301.1257 [M+H]⁺, Found: 301.1251.

Benzyl 4-butoxybutanoate (27)

Following general procedure B, the reaction was carried out with benzyl 2-(ethoxycarbonothioylthio) acetate **2'b** (135 mg, 0.50 mmol, 1.0 equiv), butyl vinyl ether **26a** (150 mg, 1.50 mmol, 3.0 equiv),

4-*tert*-butylcatechol (249 mg, 1.50 mmol, 3.0 equiv), Et₃B (1.5 mL, 1.50 mmol, 3.0 equiv) in CH₂Cl₂ (5.0 mL). Flash chromatography on silica gel (pentane/Et₂O 92:8) gave the desired product **27** as a colorless oil (100 mg, 0.40 mmol, 80%). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.39-7.31 (m, 5H), 5.12 (s, 2H), 3.43(t, *J* = 6.21 Hz, 2H), 3.38 (t, *J* = 6.54 Hz, 2H), 2.46 (t, *J* = 7.35 Hz, 2H), 1.97-1.85 (m, 2H), 1.58-1.45 (m, 2H), 1.42-1.25 (m, 2H), 0.93 (t, *J* = 7.32, 3H). ¹³C

⁹ Quiclet-Sire, B.; Revol, G.; Zard, S. Z. Tetrahedron 2010, 66, 6656.

¹⁰ Harada, T.; Karasawa, A.; Oku, A. J. Org. Chem. **1986**, 51, 842.

NMR (75 MHz, CDCl₃) δ (ppm) 173.4, 136.1, 128.5, 128.2, 70.7, 69.5, 66.1, 31.8, 31.1, 25.1, 19.3, 13.9. IR (neat, cm⁻¹): 2956, 2931, 2863, 2358, 2338, 2023, 1735, 1455, 1377, 1244, 1163, 1110, 1026, 973, 734, 696. Anal. Calcd for C₁₅H₂₂O₃: C, 71.97; H, 8.86. Found: C, 71.87; H, 8.96.

Diethyl 2-(2-butoxyethyl)malonate (28)

Following general procedure B, the reaction was carried out with diethyl 2-(ethoxycarbonothioylthio)malonate **2'g** (280 mg, 1.00 mmol), butyl vinyl ether **26a** (204 mg, 0.26 mL, 2.00 mmol), 4-*tert*-butylcatechol (498 mg, 3.00 mmol), Et₃B (2.5mL, 2.50 mmol).

Flash chromatography on silica gel (pentane/Et₂O = 92:8) gave the desired product **28** as a pale yellow oil (225 mg, 0.86 mmol, 85%). Spectral data are in accordance with the literature report.¹¹ ¹H NMR (300 MHz, CDCl₃) δ (ppm) 4.20 (q, *J* = 7.2 Hz 2H), 4.20 (q, *J* = 7.2 Hz, 2H), 3.55 (t, *J* = 7.3 Hz, 1H), 3.45 (t, *J* = 6.0 Hz, 2H), 3.38 (t, *J* = 6.5 Hz, 2H), 2.17 (dd, *J* = 13.4, 6.1 Hz, 2H), 1.59 – 1.45 (m, 2H), 1.43 – 1.31 (m, 2H), 1.27 (t, *J* = 7.1 Hz, 6H), 0.91 (t, *J* = 7.3 Hz, 3H). ¹³C NMR (75 Hz, CDCl₃) δ (ppm) 169.5, 70.8, 67.8, 61.3, 49.1, 31.7, 28.9, 19.3, 14.1, 13.9. IR (neat, cm⁻¹): 2960, 2936, 2908, 2868, 1748, 1730, 1465, 1369, 1332, 1298, 1256, 1231, 1174, 1151, 1111, 1026, 861. HRMS (ESI) Calcd. For C₁₃H₂₄O₅Na: 283.1516 [M+Na]⁺, Found:. 283.1515.

Diethyl 2-(2-butoxyethyl)-2-methylmalonate (29)

Following general procedure B, the reaction was carried out with diethyl 2-(ethoxycarbonothioylthio)-2-methylmalonate **2'h** (294 mg, 1.00 mmol), butyl vinyl ether **26a** (204 mg, 0.26 mL, 2.00 mmol), 4-*tert*-butylcatechol (498 mg, 3.00 mmol), Et₃B (2.5 mL, 2.50

mmol). Flash chromatography on silica gel (2-10% ether in pentane) gave the desired product **29** as a colorless oil (206 mg, 75%). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 4.25 – 4.10 (m, 4H), 3.46 (t, J = 6.6 Hz, 2H), 3.35 (t, J = 6.6 Hz, 2H), 2.18 (t, J = 6.6 Hz, 2H), 1.57 – 1.45 (m, 2H), 1.44 (s, 3H), 1.40 – 1.29 (m, 2H), 1.25 (t, J = 7.1 Hz, 6H), 0.90 (t, J = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 172.2, 70.9, 66.6, 61.2, 52.1, 35.2, 31.8, 19.9, 19.3, 14.0, 13.9. IR (neat, cm⁻¹): 2980, 2960, 2936, 2869, 1729, 1463, 1377, 1300, 1238, 1202, 1107, 1024, 862. HRMS (ESI) Calcd. for C₁₄H₂₆O₅Na: 297.1672 [M+Na]⁺, Found: 297.1669.

¹¹ Braun, M.-G.; Zard, S. Z. Org. Lett. 2011, 13, 776.

Cyclohex-2-enyl 4-butoxybutanoate (30)

Following general procedure B, the reaction was carried out with cyclohex-2-enyl 2-(ethoxycarbonothioylthio) acetate **6i** (260 mg, 1.0 mmol), butyl vinyl ether **26a** (300 mg, 3.0 mmol) in dichloromethane (10.0 mL), 4-*tert*-butylcatechol (500 mg, 3.0 mmol), Et₃B (1M in hexane) (3.0 mL, 3.0 mmol). Flash

chromatography on silica gel (2-9% ether in pentane) gave the desired product **30** as a colorless oil (160 mg, 0.67 mmol, 67%). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 5.99 – 5.89 (m, 1H), 5.70 (ddt, J = 10.0, 3.9, 2.1 Hz, 1H), 5.31 – 5.22 (m, 1H), 3.43 (t, J = 5.1 Hz, 2H), 3.39 (t, J = 5.4 Hz, 2H), 2.39 (t, J = 7.4 Hz, 2H), 2.18 – 1.97 (m, 2H), 1.96 – 1.81 (m, 3H), 1.80 – 1.60 (m, 3H), 1.57 – 1.48 (m, 2H), 1.45 – 1.31 (m, 2H), 0.91 (t, J = 7.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 173.2, 132.6, 125.8, 70.7, 69.6, 67.9, 31.8, 31.4, 28.3, 25.2, 24.9, 19.3, 18.9, 13.9. IR (neat, cm⁻¹): 2933, 2862, 1726, 1453, 1367, 1244, 1159, 1113, 1010, 914, 728. HRMS (ESI) Calcd. for C₁₄H₂₄O₃Na: 263.1618 [M+Na]⁺, Found: 263.1621.

Ethyl 4-(cyclohexyloxy)-2-methylbutanoate (31)

Following general procedure B, the reaction was carried out with ethyl 2-(ethoxycarbonothioylthio)propanoate **2'd** (222 mg, 1.00 mmol, 1.0 equiv), cyclohexyl vinyl ether **26b** (315 mg, 2.50 mmol, 2.5 equiv), 4-*tert*-butylcatechol (500 mg, 3.00 mmol, 3.0 equiv),

Et₃B (3.0 mL, 3.00 mmol, 1 M in hexane, 3.0 equiv) in dichloromethane (10.0 mL). Flash chromatography on silica gel (2-8% ether in pentane) gave the desired product **31** as a colorless oil (159 mg, 70%). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 4.13 (q, J = 7.1 Hz, 2H), 3.52 – 3.39 (m, 2H), 3.25 – 3.13 (m, 1H), 2.68 – 2.53 (m, 1H), 2.03 – 1.80 (m, 3H), 1.79 – 1.58 (m, 3H), 1.57 – 1.42 (m, 1H), 1.32 – 1.13 (m, 11H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 176.7, 65.3, 60.1, 36.6, 34.0, 32.2, 32.1, 25.8, 24.1, 17.2, 14.2. HRMS (ESI) Calcd. for C₁₃H₂₄O₃Na: 251.1618 [M+Na]⁺, Found: 251.1615.

Benzyl 4-methoxypentanoate (32)

Following general procedure B, the reaction was carried out with 2-methoxypropene **26c** (108 mg, 1.50 mmol, 3.0 equiv), xanthate **2'b** (135 mg, 0.50 mmol, 1.0 equiv), 4-*tert*-butylcatechol (249 mg, 1.50 mmol, 3.0 equiv), Et₃B (1.5 mL, 1.50 mmol, 3.0 equiv) in DCM (5.0

mL) and it took 3 h for the reaction to go to completion. Flash chromatography on silica gel (gradient of pentane/diethyl ether = 15:1 to 8:1) gave the desired product **7cb** as a colorless oil (71 mg, 0.32 mmol, 64% yield). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.40 – 7.28 (m, 5H), 5.12 (s,

2H), 3.38 - 3.26 (m, 4H), 2.45 (td, J = 7.3, 1.2 Hz, 2H), 1.81 (td, J = 7.8, 6.2 Hz, 2H), 1.13 (d, J = 6.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 173.7, 136.2, 128.7, 128.31, 128.30, 75.8, 66.3, 56.2, 31.5, 30.4, 19.0. IR (neat, cm⁻¹): 2970, 2930, 2822, 1733, 1456, 1374, 1341, 1262, 1160, 1132, 1085, 1028, 735, 696. HRMS (ESI) Calcd for C₁₃H₁₉O₃: 223.1329 [M+H]⁺, Found: 223.1332.

Diethyl 2-(1-ethoxypropan-2-yl)malonate (33)

Following general procedure B, the reaction was carried out with diethyl 2-(ethoxycarbonothioylthio)malonate **2'g** (280 mg, 1.00 mmol, 1.0 equiv), (E/Z)-1-ethoxyprop-1-ene **26d** (223 mg, 0.29 mL, 2.50 mmol, 2.5 equiv), 4-*tert*-butylcatechol (498 mg, 3.00 mmol, 3.0

equiv), Et₃B (2.5mL, 2.50 mmol, 2.5 equiv). Flash chromatography on silica gel (2-10% ether in pentane) gave the desired product **33** as a pale yellow oil (225 mg, 0.91 mmol, 91%). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 4.19 (q, J = 7.1 Hz, 2H), 4.19 (q, J = 7.1 Hz, 2H), 3.49 – 3.40 (m, 3H), 3.37 (d, J = 6.1 Hz, 2H), 2.61 – 2.45 (sept, 1H), 1.27 (t, J = 7.1 Hz, 3H), 1.27 (t, J = 7.1 Hz, 3H) 1.16 (t, J = 7.0 Hz, 3H), 1.02 (d, J = 6.9 Hz, 3H). ¹³C NMR (75 Hz, CDCl₃) δ (ppm) 169.0, 168.8, 73.1, 66.3, 61.1 (2C), 54.4, 33.8, 15.1, 14.7, 14.1. IR (neat, cm⁻¹): 2977, 2936, 2871, 1751, 1728, 1462, 1369, 1303, 1263, 1244, 1221, 1174, 1151, 1106, 1029, 863. HRMS (ESI) Calcd. for C₁₂H₂₂O₅Na: 269.1359 [M+Na]⁺, Found: 269.1366.

Diethyl 2-(1-ethoxypropan-2-yl)-2-methylmalonate (34)

Following general procedure B, the reaction was carried out with diethyl 2-(ethoxycarbonothioylthio)-2-methylmalonate **2'h** (270 mg, 0.92 mmol, 1.0 equiv), (E/Z)-1-ethoxy-prop-1-ene **26d** (158 mg, 0.2 mL, 1.83 mmol, 2.0 equiv), 4-*tert*-butylcatechol (457 mg, 3.00 mmol, 3.0 equiv), Et₃B (2.5 mL, 2.50 mmol, 2.5 equiv). Flash

chromatography on silica gel (2-14% ether in pentane) gave the desired product **34** as a colorless oil (152 mg, 0.58 mmol, 63%). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 4.26 – 4.07 (m, 4H), 3.52 – 3.34 (m, 3H), 3.24 (dd, J = 9.6, 7.3 Hz, 1H), 2.70 – 2.56 (m, 1H), 1.36 (s, 3H), 1.25 (t, J = 7.1 Hz, 6H), 1.16 (t, J = 7.0 Hz, 3H), 0.97 (d, J = 6.9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 171.7, 171.5, 66.2, 61.1, 61.0, 56.0, 37.6, 16.4, 15.1, 14.0, 13.4. IR (neat, cm⁻¹): 2977, 2873, 1729, 1448, 1380, 1244, 1221, 1132, 1111, 1091, 1021, 861. HRMS (ESI) Calcd. for C₁₃H₂₄O₅Na: 283.1516 [M+Na]⁺, Found:. 283.1515.

Benzyl 2-(tetrahydrofuran-3-yl)acetate (35)

Under nitrogen, to a solution of 2,3-dihydrofuran **26e** (105 mg, 1.50 mmol, 3.0 equiv) and xanthate **2'b** (135 mg, 0.50 mmol, 1.0 equiv) in

Molecular Weight: 220,27 dry DCM (5.0 mL) was added 4-*tert*-butylcatechol (249 mg, 1.50 mmol, 3.0 equiv). The solution was the cooled down to 0 °C and Et₃B (1.5 mL, 1 M in n-hexane) was added slowly via syringe while the needle was immersed in the solution. The resulting reaction mixture was stirred open to air for 4 h at 0 °C with a CaCl₂ trap. The solution was filtered over a small pad of neutral alox (eluted with diethyl ether). The filtrate was then concentrated under reduced pressure and purification by flash chromatography on silica gel (gradient of diethyl ether/pentane = 1:3 to 3:7) gave the desired product **35** as a colorless oil (30 mg, 0.14 mmol, 27% yield). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.44 – 7.31 (m, 5H), 5.15 (s, 2H), 3.96 (dd, *J* = 8.6, 7.0 Hz, 1H), 3.88 (td, *J* = 8.3, 5.2 Hz, 1H), 3.78 (dt, *J* = 8.6, 7.4 Hz, 1H), 3.44 (dd, *J* = 8.6, 6.4 Hz, 1H), 2.67 (dtd, *J* = 13.3, 6.7, 1.3 Hz, 1H), 2.50 (s, 1H), 2.48 (d, *J* = 1.2 Hz, 1H), 2.14 (dtd, *J* = 12.8, 7.7, 5.2 Hz, 1H), 1.72 – 1.52 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 172.4, 136.0, 128.7, 128.45, 128.37, 73.1, 67.8, 66.5, 38.1, 35.6, 32.2. IR (neat, cm⁻¹): 2940, 2860, 1730, 1268, 1212, 1157, 968, 904, 738, 696. HRMS (ESI) Calcd for C₁₄H₁₇O₃: 221.1172 [M+H]⁺, Found: 221.1172.

Benzyl 2-(tetrahydro-2H-pyran-3-yl)acetate (36)

Under nitrogen, to a solution of 3,4-dihydropyran **26f** (126 mg, 1.50 mmol, 3.0 equiv) and xanthate **2'b** (135 mg, 0.50 mmol, 1.0 equiv) in dry DCM (5.0 mL) was added 4-tert-butylcatechol (249 mg, 1.50 mmol, 3.0 equiv).The solution was the cooled down to 0 °C and Et₃B

(1.5 mL, 1 M in n-hexane) was added slowly via syringe while the needle was immersed in the solution. The resulting reaction mixture was stirred open to air for 4 h at 0 °C with a CaCl₂ trap. The solution was filtered over a small pad of neutral alox (eluted with diethyl ether). The filtrate was then concentrated under reduced pressure and purification by flash chromatography on silica gel (diethyl ether/pentane = 1:3) gave the desired product **36** as a colorless oil (69 mg, 0.29 mmol, 60% yield). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.43 – 7.28 (m, 5H), 5.12 (s, 2H), 3.84 (tdd, *J* = 10.6, 3.9, 1.6 Hz, 2H), 3.45 – 3.33 (m, 1H), 3.14 (dd, *J* = 11.2, 9.1 Hz, 1H), 2.33 – 2.17 (m, 2H), 2.17 – 2.04 (m, 1H), 1.87 (dtt, *J* = 14.4, 3.7, 2.0 Hz, 1H), 1.62 (ddt, *J* = 11.2, 6.1, 4.0 Hz, 2H), 1.33 – 1.17 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 172.2, 136.0, 128.7, 128.40, 128.37, 72.6, 68.4, 66.4, 37.4, 33.1, 29.7, 25.4. IR (neat, cm⁻¹): 2934, 2845, 1731, 1455, 1267, 1182, 1165, 1092, 1032, 982, 935, 913, 857, 737, 696. HRMS (ESI) Calcd for C₁₄H₁₉O₃: 235.1329 [M+H]⁺, Found: 235.1330.

Benzyl 5,5-dimethyl-4-((trimethylsilyl)oxy)hexanoate (38)

Following general procedure B, the reaction was carried out with olefin $37a^{12}$ (260 mg, 1.50 mmol, 3.0 equiv), xanthate **2'b** (135 mg, 0.50 mmol, 1.0 equiv), 4-*tert*-butylcatechol (249 mg, 1.50 mmol, 3.0 equiv), Et₃B (1.5 mL, 1.50 mmol, 3.0 equiv) in DCM (5

mL) and it took 3 h for the reaction to go to completion. Flash chromatography on silica gel (pentane/diethyl ether = 25:1) gave the desired product **38** as a colorless oil (141 mg, 0.35 mmol, 71% yield). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.41 – 7.28 (m, 5H), 5.12 (s, 2H), 3.28 (dd, J = 10.0, 2.3 Hz, 1H), 2.51 (ddd, J = 16.0, 9.2, 5.3 Hz, 1H), 2.32 (ddd, J = 16.0, 9.0, 7.1 Hz, 1H), 1.89 (dddd, J = 13.8, 9.3, 7.1, 2.3 Hz, 1H), 1.59 (dddd, J = 14.0, 10.0, 9.0, 5.3 Hz, 1H), 0.85 (s, 9H), 0.11 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 173.9, 136.2, 128.7, 128.4, 128.3, 80.4, 66.3, 35.6, 32.0, 27.6, 26.4, 1.0. IR (neat, cm⁻¹): 2956, 1736, 1250, 1152, 1084, 1029, 979, 882, 835, 748, 696. HRMS (ESI) Calcd for C₁₈H₃₁O₃Si: 323.2048 [M+H]⁺, Found: 323.2046.

Benzyl 4-((3*S*,8*S*,9*S*,10*R*,13*S*,14*S*,17*S*)-3-acetoxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14, 15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenanthren-17-yl)-4-((*tert*-butyldimethylsilyl)oxy)butanoate (39)

Under nitrogen, to a solution of olefin $37b^{13}$ (473 mg, 1.00 mmol, 2.0 equiv) and xanthate **2'b** (135 mg, 0.50 mmol, 2.0 equiv) in dry DCM (5.0 mL) was added 4-*tert*-butylcatechol (249 mg, 1.50 mmol, 3.0 equiv), followed by slow addition of Et₃B (1.0 mL, 1 M in *n*-hexane, 2.0 equiv) while the needle was immersed in the solution. The resulting reaction mixture was stirred open to air for 1 h at rt with a CaCl₂ trap. The solution

was filtered over a small pad of neutral alox (eluted with diethyl ether). The filtrate was then concentrated under reduced pressure and purification by flash chromatography on silica gel (gradient of diethyl ether/pentane = 1:20 to 1:10) gave the desired product **39** as a colorless oil (195 mg, 0.31 mmol, 63%, dr = 87:13). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.40 – 7.28 (m, 5H), 5.44 – 5.30 (m, 1H), 5.15 – 5.07 (m, 2H), 4.65 – 4.55 (m, 1H), 3.83 (ddd, *J* = 9.2, 4.4, 2.5 Hz, 1H, major dia), 3.78 – 3.68 (m, 1H, minor dia), 2.61 – 2.50 (m, 1H), 2.43 – 2.33 (m, 1H), 2.33 – 2.30 (m, 2H), 2.15 – 1.67 (m, 9H), 1.64 – 1,35 (m, 7H), 1.28 – 0.82 (m, 19H), 0.69 (s, 3H, major dia), 0.66 (s, 3H, minor dia), 0.08 (s, 3H, major dia), 0.07 (s, 3H, major dia), 0.043 (s, 3H, minor dia),

¹² Vellekoop, A. S.; Smith, R. A. J. J. Am. Chem. Soc. 1994, 116, 2902.

¹³ Mander, L. N.; Sethi, S. P. Tetrahedron Lett. 1984, 25, 5953.

0.039 (s, 3H, minor dia). ¹³C NMR (75 MHz, CDCl₃) *δ* (ppm) *major dia*: 174.3, 170.7, 139.9, 136.3, 128.7, 128.27, 128.25, 122.6, 74.1, 72.4, 66.3, 56.5, 53.6, 50.3, 42.0, 39.2, 38.3, 37.2, 36.8, 32.0, 31.9, 30.5, 27.9, 27.7, 26.3, 25.0, 24.4, 21.6, 20.9, 19.5, 18.3, 12.2, -3.4, -4.0. HRMS (ESI) Calcd for C₃₈H₅₉O₅Si: 623.4126 [M+H]⁺, Found: 623.4105.

Diethyl 2-(2-(trimethylsilyloxy)cyclohexyl) malonate (40)

Following general procedure B, the reaction was carried out with diethyl 2-(ethoxycarbonothioylthio)malonate **2'g** (280 mg, 1.00 mmol, 1.0 equiv), cyclohexenyloxytrimethylsilane **37c** (340.6 mg, 2.00 mmol, 2.0 equiv), 4-*tert*-butylcatechol (498 mg, 3.00 mmol,

3.0 equiv), Et₃B (2.5mL, 2.50 mmol, 2.5 equiv). Flash chromatography on silica gel (2-6% ether in pentane) gave the desired product **9cg** as a colorless oil (278 mg, 84%, *cis:trans* = 5:1). Spectral data are in accordance with the literature report.⁷ 1st diastereomer (trans): ¹H NMR (300 MHz, CDCl₃) δ (ppm) 3.58 – 3.50 (m, 5H), 3.40 (d, *J* = 11.0 Hz, 1H), 2.13-1.1 (m, 15H) 0.05 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 169.4, 168.9, 67.7, 61.3, 61.2, 54.9, 42.1, 33.5, 25.6, 24.1, 19.6, 14.3, 0.3. 2nd diastereomer (*cis*): ¹H NMR (300 MHz, CDCl₃) δ (ppm) 4.22 – 4.11 (m, 5H), 3.70 (d, *J* = 4.3 Hz, 1H), 2.13-1.01 (m, 15 H), 0.10 (s, 9H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 169.8, 169.0, 72.9, 61.1, 60.9, 52.2, 45.8, 36.3, 27.2, 25.7, 24.9, 13.8, 14.2, 0.5. IR (neat, cm⁻¹): 2980, 2934, 2858, 1750, 1729, 1447, 1368, 1293, 1249, 1140, 1091, 1020, 910, 884, 836, 748, 684, 524. HRMS (ESI) Calcd. for C₁₆H₃₀O₅NaSi: 353.1755 [M+Na]⁺, Found: 353.1754.

Ethyl 2-((8R,9S,13S,14S,16S,17S)-17-((tert-butyldimethylsilyl)oxy)-3-methoxy-

13-methyl-7,8,9,11,12,13,14,15,16,17-decahydro-6*H*-cyclopenta[a]phenanthren-16-yl)acetate (41)

Under nitrogen, to a solution of olefin $37d^{13}$ (199 mg, 0.50 mmol, 1.0 equiv) and xanthate **2'a** (312 mg, 1.50 mmol, 3.0 equiv) in dry DCM (5.0 mL) was added 4-*tert*-butylcatechol (166 mg, 1.00 mmol, 2.0 equiv), followed by slow addition of Et₃B (0.6 mL, 1 M in *n*-hexane) while the needle was immersed in the solution. The resulting reaction mixture was

stirred open to air for 1 h at rt with a CaCl₂ trap. The solution was filtered over a small pad of neutral alox (eluted with diethyl ether). The filtrate was then concentrated under reduced pressure and purification by flash chromatography on silica gel (gradient of diethyl ether/pentane = 1:40 to 1:20) gave the desired product **41** as a white solid (144 mg, 0.30 mmol, 59%). Suitable crystals were obtained upon slow diffusion of heptane in a solution of **41** in Et₂O in the fridge overnight. ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.19 (d, *J* = 7.7 Hz, 1H), 6.71 (dd, *J* = 8.6, 2.8 Hz, 1H), 6.62 (d, J = 2.7 Hz, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.77 (s, 3H), 3.31 (d, J = 7.1 Hz, 1H), 2.88 – 2.78 (m, 2H), 2.67 – 2.54 (m, 1H), 2.35 – 2.11 (m, 4H), 1.86 (dt, J = 12.5, 2.7 Hz, 2H), 1.75 – 1.62 (m, 1H), 1.53 – 1.35 (m, 3H), 1.39 – 1.17 (m, 3H), 1.27 (t, J = 7.1 Hz, 3H), 0.91 (s, 9H), 0.80 (s, 3H), 0.07 (s, 3H), 0.06 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 173.5, 157.6, 138.2, 132.8, 126.4, 113.9, 111.6, 86.9, 60.4, 55.4, 48.2, 44.3, 44.1, 40.6, 39.1, 38.8, 37.5, 30.0, 29.7, 27.3, 26.5, 26.0, 18.2, 14.4, 12.2, -3.8, -3.9. IR (neat, cm⁻¹): 2928, 2855, 1733, 1611, 1500, 1463, 1254, 1179, 1155, 1135, 1087, 1036, 1026, 882, 870, 836, 777, 769. HRMS (ESI) Calcd for C₂₉H₄₇O₄Si: 487.3238 [M+H]⁺, Found: 487.3218. [α]_D = +10.5 (c = 0.396, CHCl₃). mp: 76.1-77.3 °C.

X-Ray crystal structure report of 41 (CCDC number: 2031380):

Table 1. Crystal data and structure refinement for 41.

Empirical formula	$C_{29}H_{46}O_4Si$	
Formula weight	486.75	
Temperature/K	173.00(10)	
Crystal system	triclinic	
Space group	P1	
a/Å	6.44725(4)	
b/Å	10.18619(6)	

c/Å	22.76512(12)	
α/°	101.7853(5)	
β/°	91.4615(5)	
γ/°	98.5773(5)	
Volume/Å ³	1444.746(15)	
Ζ	2	
$\rho_{calc}g/cm^3$	1.119	
µ/mm ⁻¹	0.945	
F(000)	532.0	
Crystal size/mm ³	$0.251\times0.074\times0.045$	
Radiation	Cu Kα (λ = 1.54184)	
2Θ range for data collection/°	7.948 to 149.002	
Index ranges	$-8 \le h \le 8, -12 \le k \le 11, -28 \le l \le 28$	
Reflections collected	29329	
Independent reflections	9878 [$R_{int} = 0.0301, R_{sigma} = 0.0277$]	
Data/restraints/parameters	9878/3/629	
Goodness-of-fit on F ²	1.081	
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0501, \mathrm{wR}_2 = 0.1380$	
Final R indexes [all data]	$R_1 = 0.0528, wR_2 = 0.1512$	
Largest diff. peak/hole / e Å ⁻³	0.56/-0.29	
Flack parameter	0.01(2)	

(E)-Ethyl 4-(2-oxopyrrolidin-1-yl)but-3-enoate (45)

Following general procedure C, the reaction was carried out with ethyl iodoacetate **2a** (107 mg, 0.50 mmol, 1.0 equiv), enamide **44a** (277.8 mg, 2.50 mmol, 5.0 equiv) Et₃B (0.6 mL, 0.6 mmol, 1.2 equiv). Flash chromatography on silica gel (pentane:Et₂O = 1:1)

gave the desired product **45** as a pale yellow oil (68 mg, 0.34 mmol, 69% yield). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 6.97 (d, J = 14.5 Hz, 1H), 5.02 (dt, J = 14.5, 7.3 Hz, 1H), 4.14 (q, J = 7.1 Hz, 2H), 3.60 – 3.50 (m, 2H), 3.09 (dd, J = 7.3, 1.3 Hz, 2H), 2.48 (t, J = 8.1 Hz, 2H), 2.17 – 2.06 (m, 2H), 1.26 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 173.2, 172.1, 126.7, 103.6,

60.9, 45.3, 35.7, 31.3, 17.6, 14.3. HRMS (ESI) Calcd. For C₁₀H₁₆NO₃: 198.1125 [M+H]⁺, Found: 198.1122.

(E)-Phenyl 4-(2-oxopyrrolidin-1-yl) but-3-enoate (46)

Following general procedure C, the reaction was carried out with phenyl iodoacetate **2c** (131 mg, 0.5 mmol, 1.0 equiv), enamide **44a** (278mg, 2.5 mmol, 5.0 equiv) Et_3B (0.6 mL, 0.6 mmol, 1.2 equiv). Flash chromatography on silica gel (pentane: $Et_2O = 1:1$) gave the

desired product **46** as a pale yellow oil (74 mg, 0.30 mmol, 60% yield). ¹H NMR (300 MHz, CDCl₃) δ 7.38 (td, J = 7.8, 2.3 Hz, 2H), 7.30 – 7.19 (m, 1H), 7.14 – 7.01 (m, 3H), 5.11 (dtd, J = 14.5, 7.3, 2.4 Hz, 1H), 3.57 (dd, J = 8.4, 5.9 Hz, 2H), 3.36 (dt, J = 7.4, 1.8 Hz, 2H), 2.50 (td, J = 8.1, 2.4 Hz, 2H), 2.19 – 2.04 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 173.1, 170.6, 150.7, 129.5, 127.1, 125.9, 121.5, 102.7, 45.2, 35.6, 31.2, 17.5. IR (neat, cm⁻¹): 2948, 2899, 1754, 1690, 1662, 1591, 1485, 1460, 1415, 1285, 1191, 1161, 1129, 1069, 928, 817, 733, 688, 647. HRMS (ESI): calcd for C₁₄H₁₆O₃N [M+H]⁺: 246.1125, found: 246.1129.

(E)-Ethyl 2-methyl-4-(2-oxopyrrolidin-1-yl) but-3-enoate (47)

Following general procedure C, the reaction was carried out with ethyl 2-iodopropanoate **2d** (114 mg, 0.5 mmol, 1.0 equiv), enamide **44a** (278 mg, 2.5 mmol, 5.0 equiv), Et₃B (0.6 mL, 0.6 mmol, 1.2 equiv). Flash chromatography on silica gel (pentane:Et₂O = 1:1)

gave the desired product **47** as a pale yellow oil (65 mg, 0.31 mmol, 62% yield). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 6.97 (dd, J = 14.6, 1.0 Hz, 1H), 5.01 (dd, J = 14.5, 8.4 Hz, 1H), 4.12 (qd, J = 7.2, 1.0 Hz, 2H), 3.53 – 3.44 (m, 2H), 3.15 (dqd, J = 8.1, 7.0, 1.0 Hz, 1H), 2.47 (dd, J = 8.7, 7.5 Hz, 2H), 2.09 (td, J = 7.8, 1.3 Hz, 2H), 1.31 – 1.22 (m, 6H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 175.1, 173.3, 125.1, 111.0, 60.8, 45.3, 41.0, 31.3, 18.3, 17.6, 14.3. IR (neat, cm⁻¹): 2978, 2935, 2885, 1698, 1417, 1378, 1266, 1180, 1110, 733, 700. HRMS (ESI): calcd for C₁₁H₁₈O₃N [M+H]⁺: 212.1281, found: 212.1287.

Ethyl 4-(2-oxopyrrolidin-1-yl) butanoate (48)

Following general procedure B, the reaction was carried out with ethyl 2-(ethoxycarbonothioylthio)acetate **2'a** (365 mg, 1.75 mmol), 1-vinylpyrrolidin-2-one **44a** (390 mg, 3.50 mmol), 4-*tert*-butylcatechol (874 mg, 5.26 mmol) and Et₃B (5.26 mL, 5.26

mmol, 1M solution in *n*-hexane) in DCM (17.5 mL). Flash chromatography on silica gel (5% MeOH in ether) gave the desired product 48 as yellowish green oil (300 mg, 1.51 mmol, 86%).

¹H NMR (300 MHz, CDCl₃) δ (ppm) 4.11 (q, J = 7.1 Hz, 2H), 3.38 (t, J = 7.0 Hz, 2H), 3.29 (t, J = 7.2 Hz, 2H), 2.36 (t, J = 8.1 Hz, 2H), 2.30 (t, J = 7.5 Hz, 2H), 2.07 – 1.93 (m, 2H), 1.83 (p, J = 7.5 Hz, 2H), 1.23 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 175.2, 173.1, 60.6, 47.2, 42.0, 31.7, 31.1, 22.7, 18.0, 14.3. HRMS (ESI) Calcd. For C₁₀H₁₈O₃N: 200.1281 [M+H]⁺, Found: 200.1283.

Benzyl 4-(2-oxopyrrolidin-1-yl)butanoate (49)

Following general procedure B, the reaction was carried out with benzyl 2-(ethoxycarbonothioylthio) acetate **2'b** (128 mg, 0.50 mmol, 1.0 equiv), 1-vinylpyrrolidin-2-one **44a** (111 mg, 1.00 mmol, 2.0

equiv), 4-*tert*-butylcatechol (249 mg, 1.50 mmol, 3.0 equiv) and Et₃B (1.5 mL, 1.50 mmol, 3.0 equiv), 1 M solution in *n*-hexane) in DCM (5.0 mL). Flash chromatography on silica gel (EtOAc/pentane = 90:10) gave the desired product **49** as a pale yellow oil (107 mg, 0.41 mmol, 82% yield). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.4–7.28 (m, 5H), 5.11 (s, 2H), 3.36 (t, *J* = 7.0 Hz, 2H), 3.30 (t, *J* = 7.1 Hz, 2H), 2.37 (t, *J* = 7.4 Hz, 2H), 2.36 (t, *J* = 7.9 Hz, 2H), 1.99 (quin, 2H), 1.86 (quin, 2H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 175.3, 172.9, 136.0, 128.7, 128.4, 128.3, 66.5, 47.3, 42.0, 31.7, 31.1, 22.7, 18.0. IR (Neat, cm⁻¹): 2934, 2875, 2358, 2161, 1730, 1673, 1495, 1455, 1424, 1286, 1264, 1149, 1089, 971, 738, 698. HRMS (ESI) Calcd. for C₁₅H₂₀NO₃: 262.1438 [M+H]⁺, Found: 262.1438.

Phenyl 4-(2-oxopyrrolidin-1-yl)butanoate (50)

Following general procedure B, the reaction was carried out with phenyl 2-(ethoxycarbonothioylthio) acetate **2'c** (128 mg, 0.50 mmol, 1.0 equiv), 1-vinylpyrrolidin-2-one **44a** (111 mg, 1.00 mmol, 2.0

equiv), 4-*tert*-butylcatechol (249 mg, 1.50 mmol, 3.0 equiv) and Et₃B (1.5 mL, 1.50 mmol, 3.0 equiv), 1 M solution in *n*-hexane) in DCM (5.0 mL). Flash chromatography on silica gel (EtOAc/pentane = 90:10) gave the desired product **50** as a pale yellow oil (97 mg, 0.39 mmol, 79% yield). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.36 (ddd, J = 7.8, 4.6, 2.1 Hz, 2H), 7.25- 7.18 (m, 1H), 7.10-7.05 (m, 2H), 3.40 (dd, J = 13.3, 6.8 Hz, 4H), 2.59 (t, J = 7.4 Hz, 2H), 2.39 (t, J = 8.1 Hz, 2H), 2.08-1.90 (m, 4H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 175.4, 171.7, 150.8, 129.5, 125.9, 121.6,

47.3, 42.0, 31.7, 31.1, 22.6, 18.1. IR (Neat, cm⁻¹): 2934, 2875, 2358, 2158, 2031, 1754, 1673, 1591, 1492, 1462, 1424, 1365, 1286, 1192, 1161, 1131, 932, 752, 690. HRMS (ESI) Calcd. for C₁₄H₁₈NO₃: 248.1281 [M+H]⁺, Found: 248.1281.

Benzyl 4-(N-phenylacetamido)butanoate (51)

Following general procedure B, the reaction was carried out with olefin $44b^{14}$ (161 mg, 1.00 mmol, 2.0 equiv), xanthate **2'b** (135 mg, 0.50 mmol, 1.0 equiv), 4-*tert*-butylcatechol (249 mg, 1.50 mmol), Et₃B (1.5 mL, 1.50 mmol) in DCM (5.0 mL) and it took 1 h for the reaction to go to completion. Flash chromatography on

silica gel (TBME/heptane = 7:3) gave the desired product **51** as a colorless oil (110 mg, 0.35 mmol, 71% yield). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.45 – 7.27 (m, 8H), 7.19 – 7.12 (m, 2H), 5.08 (s, 2H), 3.80 – 3.67 (m, 2H), 2.40 (t, J = 7.6 Hz, 2H), 1.92 – 1.83 (m, 2H), 1.82 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 172.9, 170.5, 143.0, 136.1, 129.9, 128.7, 128.3, 128.2, 128.1, 66.4, 48.3, 31.7, 23.3, 22.9. IR (neat, cm⁻¹): 2931, 1731, 1653, 1595, 1495, 1454, 1393, 1295, 1276, 1210, 1157, 1075, 1026, 976, 768, 741, 697, 564. HRMS (ESI) Calcd for C₁₉H₂₂O₃N: 312.1594 [M+H]⁺, Found: 312.1579.

Diethyl 2-(2-(1,3-dioxoisoindolin-2-yl)ethyl)malonate (52)

Under nitrogen, to a solution of *N*-vinylphthamilide **44c** (87 mg, 0.50 mmol, 1.0 equiv) and xanthate **2'g** (280 mg, 1.00 mmol, 2.0 equiv) in dry DCM (5.0 mL) was added 4-*tert*-butylcatechol (249 mg, 1.50 mmol, 3.0 equiv), followed by slow addition of Et₃B (1.50 mmol, 1.5 mL, 1 M in *n*-hexane) while the needle was immersed in

the solution. The resulting reaction mixture was stirred open to air for 2 h at rt with a CaCl₂ trap. The solution was filtered over a small pad of neutral alox (eluted with diethyl ether). The filtrate was then concentrated under reduced pressure and purification by flash chromatography on silica gel (gradient of diethyl ether/pentane = 1:2 to 2:3) gave the desired product **52** as a colorless oil (143 mg, 0.43 mmol, 86% yield). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.83 (dt, J = 6.9, 3.5 Hz, 2H), 7.78 – 7.66 (m, 2H), 4.17 (qd, J = 7.1, 2.2 Hz, 4H), 3.79 (t, J = 6.8 Hz, 2H), 3.38 (t, J = 7.3 Hz, 1H), 2.28 (q, J = 7.0 Hz, 2H), 1.25 (t, J = 7.1 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 168.8, 168.3, 134.1, 132.2, 123.4, 61.8, 49.8, 35.9, 27.7, 14.1. IR (neat, cm⁻¹): 2983, 2937, 1773,

¹⁴ Feltenberger, J. B.; Hayashi, R.; Tang, Y.; Babiash, E. S. C.; Hsung, R. P. Org. Lett. 2009, 11, 3666.

1706, 1467, 1439, 1395, 1368, 1336, 1272, 1245, 1174, 1153, 1121, 1011, 857, 718. HRMS (ESI) Calcd for C₁₇H₂₀O₆N: 334.1285 [M+H]⁺, Found: 334.1290.

Benzyl 3-methyl-4-(2-oxopyrrolidin-1-yl)butanoate (53)

Following general procedure B, the reaction was carried out with olefin $44d^{15}$ (125 mg, 1.00 mmol), xanthate **2'b** (135 mg, 0.5 mmol), 4-*tert*-butylcatechol (249 mg, 1.50 mmol), Et₃B (1.5 mL, 1.50 mmol) in DCM (5 mL) and it took 2 h for the reaction to go to

completion. Flash chromatography on silica gel (ethyl acetate/heptane = 2:1) gave the desired product **53** as a colorless oil (77 mg, 0.28 mmol, 56% yield). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.40 – 7.28 (m, 5H), 5.11 (s, 2H), 3.43 – 3.28 (m, 2H), 3.21 (dd, J = 13.5, 7.2 Hz, 1H), 3.11 (dd, J = 13.5, 6.8 Hz, 1H), 2.42 – 2.26 (m, 4H), 2.25 – 2.16 (m, 1H), 2.07 – 1.90 (m, 2H), 0.94 (d, J = 6.5 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 175.5, 172.7, 136.0, 128.7, 128.4, 128.3, 66.4, 48.3, 47.6, 39.2, 31.0, 29.0, 18.1, 17.9. IR (neat, cm⁻¹): 2961, 2916, 2874, 1729, 1678, 1456, 1424, 1385, 1285, 1267, 1205, 1153, 1109, 1082, 981, 740, 698. HRMS (ESI) Calcd for C₁₆H₂₂O₃N: 276.1594 [M+H]⁺, Found: 276.1598.

Benzyl 4-(2-oxooxazolidin-3-yl)butanoate (54)

Following general procedure B, the reaction was carried out with olefin $44e^{16}$ (113 mg, 1.00 mmol), xanthate **2'b** (135 mg, 0.50 mmol), 4-*tert*-butylcatechol (249 mg, 1.50 mmol), Et₃B (1.5 mL, 1.50 mmol) in DCM (5.0 mL) and it took 1.5 h for the reaction to go to completion. Flash chromatography on silica gel (gradient of

ethyl acetate/heptane = 1:1 to 4:1) gave the desired product **54** as a colorless oil (117 mg, 0.44 mmol, 89% yield). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.41 – 7.27 (m, 5H), 5.11 (s, 2H), 4.32 – 4.22 (m, 2H), 3.58 – 3.47 (m, 2H), 3.29 (t, *J* = 7.1 Hz, 2H), 2.42 (t, *J* = 7.3 Hz, 2H), 1.90 (p, *J* = 7.2 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 172.8, 158.6, 135.9, 128.7, 128.4, 128.3, 66.5, 61.8, 44.7, 43.8, 31.4, 22.7. IR (neat, cm⁻¹): 2921, 1728, 1483, 1427, 1261, 1153, 1096, 1046, 968, 760, 752, 740, 697. HRMS (ESI) Calcd for C₁₄H₁₈O₄N: 264.1230 [M+H]⁺, Found: 264.1234.

¹⁵ Xu, H.; Zi, Y.; Xu, X.; Wang, S.; Ji, S. *Tetrahedron* **2013**, *69*, 1600.

¹⁶ Gaulon, C.; Gizecki, P.; Dhal, R.; Dujardin, G. Synlett 2002, 952.

Benzyl 4-(3-acetyl-2-oxoimidazolidin-1-yl)butanoate (55)

Following general procedure B, the reaction was carried out with olefin **44f** (154 mg, 1.00 mmol, 2.0 equiv), xanthate **2'b** (135 mg, 0.50 mmol, 1.0 equiv), 4-*tert*-butylcatechol (249 mg, 1.50 mmol), Et₃B (1.5 mL, 1.50 mmol) in DCM (5.0 mL) and it took 1 h for the

reaction to go to completion. Flash chromatography on silica gel (ethyl acetate/heptane = 1:1 to 3:2) gave the desired product **55** as a light yellow oil (135 mg, 0.44 mmol, 89% yield). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.39 – 7.29 (m, 5H), 5.11 (s, 2H), 3.80 (t, *J* = 8.1 Hz, 2H), 3.43 – 3.34 (m, 2H), 3.31 (t, *J* = 7.0 Hz, 2H), 2.47 (s, 3H), 2.41 (t, *J* = 7.3 Hz, 2H), 1.90 (p, *J* = 7.2 Hz, 2H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 172.8, 170.9, 155.0, 135.9, 128.7, 128.5, 128.4, 66.6, 43.3, 40.9, 39.6, 31.5, 23.4, 22.5. IR (neat, cm⁻¹): 2934, 1719, 1675, 1482, 1431, 1379, 1356, 1335, 1259, 1150, 1107, 743, 698, 610. HRMS (ESI) Calcd for C₁₆H₂₁O₄N₂: 305.1496 [M+H]⁺, Found: 305.1488.

Benzyl 3-(2-(benzyloxy)-2-oxoethyl)pyrrolidine-1-carboxylate (56)

Following general procedure B, the reaction was carried out with olefin **44g** (203 mg, 1.00 mmol, 2.0 equiv), xanthate **2'b** (135 mg, 0.50 mmol, 1.0 equiv), 4-*tert*-butylcatechol (249 mg, 1.50 mmol), Et₃B (1.5 mL, 1.50 mmol) in DCM (5.0 mL) and it took 2 h for the reaction to go to completion. Flash chromatography on silica gel

(TBME/pentane = 3:7) gave the desired product **56** as a colorless oil (60 mg, 0.17 mmol, 34% yield). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.49 – 7.30 (m, 10H), 5.15 (s, 4H), 3.71 (dt, *J* = 10.5, 7.0 Hz, 1H), 3.56 (dp, *J* = 11.2, 3.8 Hz, 1H), 3.40 (q, *J* = 9.5, 8.9 Hz, 1H), 3.06 (td, *J* = 11.3, 7.7 Hz, 1H), 2.62 (dq, *J* = 15.1, 7.5 Hz, 1H), 2.47 (d, *J* = 7.9 Hz, 2H), 2.21 – 2.03 (m, 1H), 1.60 (dt, *J* = 12.3, 8.2 Hz, 1H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 171.9, 154.9, 137.1, 135.8, 128.7, 128.6, 128.5, 128.4, 128.05, 127.99, 66.8, 66.6, 51.5, 51.1, 45.7, 45.4, 37.7, 35.4, 34.6, 31.6, 30.9. IR (neat, cm⁻¹): 2950, 2875, 1732, 1697, 1415, 1358, 1154, 1117, 966, 767, 736, 695, 603. HRMS (ESI) Calcd for C₂₁H₂₄O₄N: 354.1700 [M+H]⁺, Found: 354.1700.

Benzyl 3-(2-(benzyloxy)-2-oxoethyl)piperidine-1-carboxylate (57)

Following general procedure B, the reaction was carried out with olefin **44h**¹⁷ (217 mg, 1.00 mmol, 2.0 equiv), xanthate **2'b** (135 mg, 0.50 mmol, 1.0 equiv), 4-*tert*-butylcatechol (249 mg, 1.50 mmol),

¹⁷ De Simone, F.; Saget, T.; Benfatti, F.; Almeida, S.; Waser, J. Chem. Eur. J. 2011, 17, 14527.

Et₃B (1.5 mL, 1.50 mmol) in DCM (5.0 mL) and it took 2 h for the reaction to go to completion. Flash chromatography on silica gel (diethyl ether/pentane = 1:2) gave the desired product **57** as a colorless oil (146 mg, 0.40 mmol, 79% yield). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.43 – 7.27 (m, 10H), 5.13 (s, 2H), 5.11 (s, 2H), 4.15 – 3.87 (m, 2H), 2.90 (ddd, J = 13.6, 10.8, 3.3 Hz, 1H), 2.70 (br, 1H), 2.38 – 2.20 (m, 2H), 2.04 (ddp, J = 10.3, 7.1, 3.5 Hz, 1H), 1.85 (dt, J = 13.1, 4.3 Hz, 1H), 1.65 (ddd, J = 17.1, 8.1, 4.2 Hz, 1H), 1.49 (h, J = 10.9, 9.3 Hz, 1H), 1.29 – 1.10 (m, 1H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 171.9, 155.4, 137.0, 136.0, 128.7, 128.6, 128.38, 128.35, 128.0, 127.9, 67.1, 66.4, 49.3, 44.5, 38.3, 32.9, 30.5 (a CH₂ group was detected at 24.4 ppm as broad line). IR (neat, cm⁻¹): 3031, 2934, 2853, 1732, 1693, 1429, 1259, 1234, 1151, 1130, 1083, 1028, 977, 735, 695. HRMS (ESI) Calcd for C₂₂H₂₆O₄N: 368.1856 [M+H]⁺, Found: 368.1846.

Benzyl 3-((2-oxooxazolidin-3-yl)methyl)heptanoate (58)

Following general procedure B, the reaction was carried out with olefin $44i^{18}$ (169 mg, 1.00 mmol), xanthate **2'b** (135 mg, 0.50 mmol), *tert*-butylcatechol (249 mg, 1.50 mmol), Et₃B (0.75 mL, 0.75 mmol) in DCM (5.0 mL) and it took 3 h for the reaction to go to completion. Flash chromatography on silica gel (ethyl

acetate/heptane = 1:2) gave the desired product **58** as a colorless oil (108 mg, 0.34 mmol, 68% yield). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.43 – 7.27 (m, 5H), 5.13 (d, *J* = 12.2 Hz, 1H), 5.08 (d, *J* = 12.3 Hz, 1H), 4.33 – 4.14 (m, 2H), 3.57 (td, *J* = 8.7, 6.5 Hz, 1H), 3.47 (ddd, *J* = 9.2, 8.3, 7.3 Hz, 1H), 3.23 (dd, *J* = 13.9, 8.4 Hz, 1H), 3.13 (dd, *J* = 13.9, 6.1 Hz, 1H), 2.35 (dd, *J* = 6.5, 2.1 Hz, 2H), 2.19 (tdd, *J* = 8.7, 5.0, 3.4 Hz, 1H), 1.36 – 1.21 (m, 6H), 0.97 – 0.77 (m, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 173.0, 159.0, 135.9, 128.7, 128.43, 128.41, 66.5, 61.8, 48.9, 45.2, 37.1, 33.8, 32.0, 28.8, 22.9, 14.1. IR (neat, cm⁻¹): 2955, 2926, 2858, 1730, 1483, 1428, 1380, 1260, 1157, 1112, 1041, 970, 760, 737, 696. HRMS (ESI) Calcd for C₁₈H₂₆O₄N: 320.1856 [M+H]⁺, Found: 320.1862.

Benzyl 3-methyl-4-(2-oxooxazolidin-3-yl)pentanoate (59)

Under nitrogen, to a solution of olefin $44j^3$ (71 mg, 0.50 mmol, 1.0 equiv) and xanthate **2'b** (270 mg, 1.00 mmol, 2.0 equiv) in dry DCM (5.0 mL) was added 4-*tert*-butylcatechol (249 mg, 1.50 mmol, 3.0 equiv), followed by slow addition of Et₃B (1.5 mL, 1 M

in *n*-hexane) while the needle was immersed in the solution. The resulting reaction mixture was stirred open to air for 1 h at rt with a $CaCl_2$ trap. The solution was filtered over a small pad of

¹⁸ Koleoso, O. K.; Elsegood, M. R. J.; Teat, S. J.; Kimber, M. C. Org. Lett. **2018**, 20, 1003.

neutral alox (eluted with diethyl ether). The filtrate was then concentrated under reduced pressure and purification by flash chromatography on silica gel (gradient of diethyl ether/pentane = 1:1 to 1:0) gave the first diastereoisomer as a colorless oil (46 mg, 0.16 mmol, 32% yield) and the second diastereoisomer as a colorless oil (45 mg, 0.16 mmol, 32% yield). Ist diastereoisomer: ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.42 – 7.29 (m, 5H), 5.11 (d, J = 12.3Hz, 1H), 5.10 (d, J = 12.3Hz, 1H), 4.29 (td, J = 8.7, 5.8 Hz, 1H), 4.23 – 4.13 (m, 1H), 3.67 (dq, J = 9.7, 6.7 Hz, 1H), 3.55 - 3.40 (m, 2H), 2.55 - 2.43 (m, 1H), 2.25 - 2.04 (m, 2H), 1.19 (d, *J* = 6.8 Hz, 3H), 0.99 (d, *J* = 6.5 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 173.1, 158.4, 136.0, 128.7, 128.41, 128.36, 66.5, 62.1, 54.0, 40.2, 39.3, 34.2, 17.7, 16.0. IR (neat, cm⁻¹): 2972, 2930, 1731, 1483, 1455, 1420, 1383, 1252, 1173, 1061, 1031, 1005, 975, 761, 697. HRMS (ESI) Calcd for C₁₆H₂₂O₄N: 292.1543 $[M+H]^+$, Found: 292.1537. 2nd diastereoisomer: ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.42 – 7.28 (m, 5H), 5.13 (s, 2H), 4.40 - 4.23 (m, 2H), 3.76 (dq, J = 8.7, 6.8 Hz, 1H), 3.60 - 3.36 (m, 2H), 2.57 - 2.45 (m, 1H), 2.27 - 2.05 (m, 2H), 1.18 (d, J = 6.9 Hz, 3H), 0.96 (d, J = 6.4 Hz, 3H). 13 C NMR (75 MHz, CDCl₃) δ (ppm) 172.5, 158.4, 135.9, 128.7, 128.5, 66.6, 62.0, 53.3, 40.6, 38.8, 34.4, 16.9, 15.9. IR (neat, cm⁻¹): 2971, 2925, 1728, 1483, 1455, 1421, 1382, 1253, 1180, 1145, 1058, 1031, 979, 760, 697. HRMS (ESI) Calcd for $C_{16}H_{22}O_4N$: 292.1543 [M+H]⁺, Found: 292.1534.

Benzyl 2-(2-(2-oxooxazolidin-3-yl)cyclohexyl)acetate (60)

Under nitrogen, to a solution of olefin **44k** (84 mg, 0.50 mmol, 1.0 equiv) and xanthate **2'b** (270 mg, 1.00 mmol, 2.0 equiv) in dry DCM (5.0 mL) was added 4-*tert*-butylcatechol (249 mg, 1.50 mmol, 3.0 equiv), followed by slow addition of Et₃B (1.5 mL, 1 M in *n*-hexane) while the needle was immersed in the solution. The

resulting reaction mixture was stirred open to air for 3 h at rt with a CaCl₂ trap. The solution was filtered over a small pad of neutral alox (eluted with diethyl ether). The filtrate was then concentrated under reduced pressure and purification by flash chromatography on silica gel (ethyl acetate/heptane = 1:1) gave the first diastereoisomer as a colorless oil (29 mg, 0.09 mmol, 18% yield), the second diastereoisomer as a colorless oil (40 mg, 0.13 mmol, 25% yield) and a mixture of the two diastereoisomers (38 mg, 0.12 mmol, 24% yield). *1st diastereoisomer:* ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.40 – 7.27 (m, 5H), 5.12 (d, *J* = 12.3 Hz, 1H), 5.06 (d, *J* = 12.3 Hz, 1H), 4.33 – 4.22 (m, 1H), 4.15 (q, *J* = 8.6 Hz, 1H), 3.54 – 3.41 (m, 3H), 2.48 (dd, *J* = 15.8, 5.4 Hz, 1H), 2.16 (dd, *J* = 15.9, 7.3 Hz, 1H), 2.06 – 1.90 (m, 1H), 1.90 – 1.65 (m, 4H), 1.52 – 1.31 (m, 2H), 1.31 – 1.06 (m, 2H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 173.1, 158.4, 136.0, 128.7, 128.4, 128.3, 66.5, 62.2, 56.8, 40.3, 38.6, 37.3, 32.4, 29.9, 25.5, 25.4. IR (neat, cm⁻¹): 2926, 2855, 1728, 1482,

1450, 1420, 1384, 1249, 1230, 1159, 1111, 1062, 1031, 975, 759, 739, 696. HRMS (ESI) Calcd for C₁₈H₂₄O₄N: 318.1700 [M+H]⁺, Found: 318.1693. 2nd diastereoisomer: ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.40 – 7.27 (m, 5H), 5.13 (d, J = 12.2 Hz, 1H), 5.07 (d, J = 12.2 Hz, 1H), 4.31 – 4.22 (m, 1H), 4.18 (q, J = 8.5 Hz, 1H), 3.85 (td, J = 7.8, 7.3, 4.6 Hz, 1H), 3.72 – 3.60 (m, 1H), 3.55 (td, J = 8.6, 5.0 Hz, 1H), 2.69 (ddq, J = 9.0, 6.1, 4.5 Hz, 1H), 2.51 (dd, J = 15.1, 6.0 Hz, 1H), 2.39 (dd, J = 15.1, 8.7 Hz, 1H), 1.84 – 1.66 (m, 3H), 1.58 (q, J = 4.9 Hz, 2H), 1.50 – 1.33 (m, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 172.8, 158.3, 135.9, 128.7, 128.5, 128.4, 66.6, 62.0, 54.6, 44.2, 35.5, 34.0, 29.3, 25.8, 25.0, 21.0. IR (neat, cm⁻¹): 2929, 2859, 1728, 1482, 1454, 1415, 1252, 1157, 1077, 1058, 1035, 1000, 976, 741, 697. HRMS (ESI) Calcd for C₁₈H₂₄O₄N: 318.1700 [M+H]⁺, Found: 318.1694.

Ethyl 4-((S)-2-oxo-4-phenyloxazolidin-3-yl)pentanoate (62)

Following general procedure B, the reaction was carried out with ethyl 2-(ethoxy-carbonothioylthio)acetate **2'a** (208 mg, 1.00 mmol, 1.0 equiv), (*S*)-4-phenyl-3-(prop-1-en-2-yl)-oxazolidin-2-one **61a** (406 mg, 2.00 mmol, 2.0 equiv) in DCM (10.0 mL), 4-*tert*-butylcatechol (498 mg, 3.00 mmol), Et₃B (3.0 mL, 3.00

mmol, 1 M in *n*-hexane). Flash chromatography on silica gel (20-60% ether in pentane) gave the desired product **62** as a colorless oil (250 mg, 0.86 mmol, 86%, dr = 55:45). *I*st diastereoisomer: ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.43 – 7.29 (m, 5H), 4.74 (dd, *J* = 8.8, 6.4 Hz, 1H), 4.57 (t, *J* = 8.8 Hz, 1H), 4.13 (dd, *J* = 8.6, 6.4 Hz, 1H), 4.1-4.01 (m, 2H), 3.69 – 3.54 (m, 1H), 2.34 – 2.20 (m, 2H), 2.19 – 2.05 (m, 1H), 1.89 – 1.73 (m, 1H), 1.22 (t, *J* = 7.1 Hz, 3H), 0.91 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 173.1, 158.1, 139.7, 129.3, 129.2, 127.4, 70.4, 60.6, 58.9, 50.3, 31.5, 28.6, 18.7, 14.3. *2nd diastereoisomer:* ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.43 – 7.31 (m, 5H), 4.79 (dd, *J* = 9.0, 6.7 Hz, 1H), 4.58 (t, *J* = 8.9 Hz, 1H), 4.15 (dd, *J* = 8.7, 6.8 Hz, 1H), 4.06 (q, *J* = 7.1 Hz, 2H), 3.64 – 3.47 (m, 1H), 2.36 – 2.12 (m, 2H), 1.72 – 1.47 (m, 2H), 1.22 (d, *J* = 6.9 Hz, 3H), 1.20 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 173.0, 157.9, 139.4, 129.3 (2C), 127.4, 70.2, 60.5, 60.0, 50.3, 31.5, 29.6, 18.0, 14.3. HRMS (ESI) Calcd. For C₁₆H₂₁NO₄Na: 314.1363 [M+Na]⁺, Found: 314.1364.

Ethyl 4-((S)-4-benzyl-2-oxooxazolidin-3-yl)pentanoate (63)

Following general procedure B, the reaction was carried out with ethyl 2-(ethoxycarbonothioylthio)acetate **2'a** (208 mg, 1.00 mmol, 1.0 equiv), (*S*)-4-benzyl-3-(prop-1-en-2-yl)-oxazolidin-2-one **61b** (436 mg, 2.00 mmol, 2.0 equiv) in DCM (10.0 mL),

4-tert-butylcatechol (500 mg, 3.00 mmol), Et₃B (3.0 mL, 3.00 mmol, 1M in n-hexane). Flash
chromatography on silica gel (20-60% ether in pentane) gave the desired product **63** as a colorless oil (220 mg, 72%, dr = 60:40). *1*st diastereoisomer: ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.39 – 7.23 (m, 3H), 7.20 – 7.12 (m, 2H), 4.14 (q, *J* = 7.1 Hz, 2H), 4.08 – 3.93 (m, 3H), 3.82 – 3.66 (m, 1H), 3.23 (dd, *J* = 13.1, 3.1 Hz, 1H), 2.62 (dd, *J* = 13.2, 9.5 Hz, 1H), 2.48 – 2.33 (m, 2H), 2.34 – 2.16 (m, 1H), 2.08 – 1.94 (m, 1H), 1.37 (d, *J* = 6.8 Hz, 3H), 1.26 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 173.0, 157.6, 135.6, 129.0, 127.3, 66.9, 60.6, 56.1, 49.9, 40.3, 31.4, 28.7, 19.0, 14.2. 2nd diastereomer: ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.39 – 7.23 (m, 3H), 7.20 – 7.12 (m, 2H), 4.14 (q, *J* = 7.1 Hz, 2H), 4.08 – 3.93 (m, 3H), 3.82 – 3.66 (m, 1H), 3.23 (dd, *J* = 13.1, 3.1 Hz, 1H), 2.72 – 2.61 (m, 1H) , 2.47 – 2.34 (m, 2H), 2.32 – 2.10 (m, 1H), 2.01 – 1.85 (m, 1H), 1.37 (d, *J* = 6.8 Hz, 3H), 1.26 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 173.1, 157.5, 135.6, 129.0 (2C), 127.3, 66.7, 60.5, 57.1, 49.9, 40.3, 31.5, 30.4, 18.3, 14.2. HRMS (ESI) Calcd. For C₁₇H₂₃NO₄Na: 328.1519 [M+Na]⁺, Found: 328.1518.

Benzyl 4-((S)-4-isopropyl-2-oxooxazolidin-3-yl)pentanoate (64)

Following general procedure B, the reaction was carried out with olefin **61c** (169 mg, 1.00 mmol, 2.0 equiv), xanthate **2'b** (135 mg, 0.50 mmol, 1.0 equiv), 4-*tert*-butylcatechol (249 mg, 1.50 mmol), Et₃B (1.5 mL, 1.50 mmol) in DCM (5.0 mL) and it took 2 h for the reaction to go to completion. Flash chromatography on silica gel

(gradient of ethyl acetate/heptane = 3:7 to 1:2) gave the desired product **64** as a light yellow oil (117 mg, 0.37 mmol, 73% yield, dr = 56:44). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.38 (d, *J* = 4.0 Hz, 10H), 5.14 (s, 4H), 4.21 – 4.01 (m, 4H), 3.72 – 3.61 (m,3H), 3.50 (dp, *J* = 8.7, 6.8 Hz, 1H), 2.53 – 2.33 (m, 4H), 2.28 – 2.09 (m, 2H), 2.09 – 1.84 (m, 4H), 1.37 (d, *J* = 6.9 Hz, 3H), 1.29 (d, *J* = 6.8 Hz, 3H), 0.92 (d, *J* = 6.8 Hz, 3H), 0.91 (d, *J* = 6.8 Hz, 3H), 0.88 (d, *J* = 7.0 Hz, 3H), 0.86 (d, *J* = 7.0 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 173.0, 172.9, 158.2, 157.6, 136.0, 135.9, 128.7, 128.43, 128.42, 66.55, 66.46, 62.7, 62.6, 61.2, 59.3, 50.0, 49.9, 31.6, 31.5, 29.8, 29.3, 28.6, 18.8, 18.4, 18.2, 18.1, 14.2, 14.1. HRMS (ESI) Calcd for C₁₈H₂₆O₄N: 320.1856 [M+H]⁺, Found: 320.1845.

Benzyl 3-(((S)-4-isopropyl-2-oxooxazolidin-3-yl)methyl)pentanoate (65)

Following general procedure B, the reaction was carried out with olefin $61d^{19}$ (183 mg, 1.00 mmol, 2.0 equiv), xanthate **2'b** (135 mg, 0.50 mmol, 1.0 equiv), 4-*tert*-butylcatechol (249 mg, 1.50 mmol), Et₃B (1.5 mL, 1.50 mmol) in DCM (5.0 mL) and it took 1

¹⁹ Guin, J.; Fröhlich, R.; Studer, A. Angew. Chem. Int. Ed. 2008, 47, 779.

h for the reaction to go to completion. Flash chromatography on silica gel (gradient of diethyl ether/pentane = 2:3 to 1:1) gave the desired product **65** as a colorless oil containing the other diastereoisomer in a 96:4 ratio (diastereomeric ratio was determined by GC analysis of the crude reaction mixture) (97 mg, 0.29 mmol, 58% yield of combined diastereoisomers). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.40 – 7.28 (m, 5H), 5.14 (d, *J* = 12.2 Hz, 1H), 5.06 (d, *J* = 12.3 Hz, 1H), 4.16 – 3.99 (m, 2H), 3.76 (ddd, *J* = 8.6, 4.8, 3.4 Hz, 1H), 3.42 (dd, *J* = 14.3, 10.4 Hz, 1H), 2.96 (dd, *J* = 14.3, 4.5 Hz, 1H), 2.45 – 2.27 (m, 2H), 2.22 – 2.10 (m, 1H), 2.04 (ddq, *J* = 10.3, 6.9, 3.6 Hz, 1H), 1.50 – 1.28 (m, 2H), 0.93 (t, *J* = 7.5 Hz, 3H), 0.88 (d, *J* = 7.0 Hz, 3H), 0.83 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 173.2, 158.8, 135.9, 128.7, 128.40, 128.38, 66.5, 62.7, 58.7, 45.5, 36.9, 34.8, 27.1, 25.5, 17.8, 14.2, 11.1. IR (neat, cm⁻¹): 2960, 2931, 2876, 1734, 1422, 1384, 1242, 1192, 1157, 1117, 1049, 1005, 975, 739, 697. HRMS (ESI) Calcd for C₁₉H₂₈O₄N: 334.2013 [M+H]⁺, Found: 334.2005. [α]_D = 11.4 (c = 0.212, DCM).

Chromatogram of compound 65 and other diastereoisomer:

Peak Number #	Ret. Time	Area %
1	28.39	96.3991
2	28.54	3.6009

Benzyl 3-(((S)-2-oxo-4-phenyloxazolidin-3-yl)methyl)pentanoate (66)

Following general procedure B, the reaction was carried out with olefin **61e** (217 mg, 1.00 mmol, 2.0 equiv), xanthate **2'b** (135 mg, 0.50 mmol, 1.0 equiv), 4-*tert*-butylcatechol (249 mg, 1.50 mmol), Et₃B (1.5 mL, 1.50 mmol) in DCM (5.0 mL) and it took 3 h for the reaction to go to completion (diastereomeric ratio of 89:11 was

determined by ¹H NMR analysis of the crude reaction mixture). Flash chromatography on silica

gel (gradient of diethyl ether/pentane = 2:3 to 1:1) gave the major diastereoisomer as a colorless oil (103 mg, 0.28 mmol, 56% yield) and the minor diastereoisomer as a colorless oil (12 mg, 0.03 mmol, 7% yield). Major diastereoisomer: ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.45 – 7.29 (m, 8H), 7.28 – 7.21 (m, 2H), 5.15 (d, J = 12.3 Hz, 1H), 5.08 (d, J = 12.2 Hz, 1H), 4.80 (dd, J = 8.9, 5.4 Hz, 1H), 4.51 (t, J = 8.8 Hz, 1H), 4.12 (dd, J = 8.7, 5.4 Hz, 1H), 3.35 (dd, J = 14.2, 10.5 Hz, 1H), 2.69 (dd, J = 14.2, 4.3 Hz, 1H), 2.48 – 2.23 (m, 2H), 2.17 – 1.96 (m, 1H), 1.24 (p, J = 7.3 Hz, 2H), 0.74 (t, J = 7.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 173.3, 158.6, 138.2, 136.0, 129.5, 129.2, 128.7, 128.4, 127.2, 69.9, 66.6, 59.4, 46.0, 37.1, 34.5, 25.4, 11.0. IR (neat, cm⁻¹): 2962, 2926, 1743, 1457, 1415, 1383, 1235, 1184, 1154, 755, 697. HRMS (ESI) Calcd for $C_{22}H_{26}O_4N$: 368.1856 [M+H]⁺, Found: 368.1846. [α]_D = 32.0 (c = 0.212, CHCl₃). *Minor diastereoisomer:*¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.44 – 7.30 (m, 6H), 7.30 – 7.23 (m, 4H), 5.03 (d, J = 12.3 Hz, 1H), 4.97 (d, J = 12.3 Hz, 1H), 4.75 (dd, J = 8.8, 5.4 Hz, 1H), 4.60 (t, J = 8.7 Hz, 1H), 4.16 (dd, J = 8.7, 5.4 Hz, 1H), 3.37 (dd, J = 14.2, 8.2 Hz, 1H), 2.70 (dd, J = 14.2, 6.0 Hz, 1H), 2.35 (dd, J = 15.5, 6.5 Hz, 1H), 2.22 (dd, J = 15.5, 6.8 Hz, 1H), 2.06 (dq, J = 8.4, 6.5 Hz, 1H), 1.50 – 1.33 (m, 1H), 1.27 (dq, J = 14.3, 7.2 Hz, 1H), 0.86 (t, J = 7.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 172.4, 158.7, 138.1, 135.9, 129.4, 129.2, 128.7, 128.4, 128.3, 127.2, 69.9, 66.4, 60.5, 45.6, 36.4, 35.2, 24.4, 10.6. HRMS (ESI) Calcd for $C_{22}H_{26}O_4N$: 368.1856 [M+H]⁺, Found: 368.1848.

Diethyl 2-(1-((S)-4-isopropyl-2-oxooxazolidin-3-yl)butan-2-yl)malonate (67)

Under nitrogen, to a solution of olefin **61d** (92 mg, 0.50 mmol, 1.0 equiv) and xanthate **2'g** (280 mg, 1.00 mmol, 2.0 equiv) in dry DCM (5 mL) was added 4-*tert*-butylcatechol (249 mg, 1.50 mmol, 3.0 equiv), followed by slow addition of Et₃B (1.5 mL, 1 M in n-hexane) while the needle was immersed in the solution. The

resulting reaction mixture was stirred open to air for 3 h at rt with a CaCl₂ trap. The solution was filtered over a small pad of neutral alox (eluted with diethyl ether). The filtrate was then concentrated under reduced pressure and purification by flash chromatography on silica gel (gradient of diethyl ether/pentane = 2:3 to 1:1) gave the desired product **67** as a colorless oil containing the other diastereoisomer in a 99:1 ratio (diastereomeric ratio was determined by GC analysis of the crude reaction mixture) (104 mg, 0.30 mmol, 61% yield of combined diastereoisomers). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 4.27 – 4.02 (m, 6H), 3.82 – 3.72 (m, 1H), 3.58 (dd, *J* = 14.6, 9.1 Hz, 1H), 3.46 (d, *J* = 7.6 Hz, 1H), 3.09 (dd, *J* = 14.6, 5.1 Hz, 1H), 2.47 – 2.31 (m, 1H), 2.08 (ddq, *J* = 10.3, 6.9, 3.5 Hz, 1H), 1.48 (pd, *J* = 7.5, 1.8 Hz, 2H), 1.27 (t, *J* = 7.1 Hz, 6H), 0.96 (t, *J* = 7.5 Hz, 3H), 0.90 (d, *J* = 7.0 Hz, 3H), 0.84 (d, *J* = 6.8 Hz, 3H). ¹³C NMR (75

MHz, CDCl₃) δ (ppm) 169.0, 168.7, 158.6, 62.7, 61.74, 61.67, 59.3, 54.0, 43.9, 37.9, 27.3, 23.3, 17.9, 14.24, 14.18, 14.1, 11.4. IR (neat, cm⁻¹): 2965, 2936, 2877, 1744, 1727, 1464, 1422, 1369, 1242, 1173, 1158, 1117, 1095, 1048, 1031, 977, 852, 771, 701. HRMS (ESI) Calcd for C₁₇H₃₀O₆N: 344.2068 [M+H]⁺, Found: 344.2056. [α]_D = 23.7 (c = 0.214, DCM).

Chromatogram of compound 67 and other diastereoisomer:

Peak Number #	Ret. Time	Area %
1	24.07	98.8264
2	24.38	1.1736

Diethyl 2-(1-((S)-2-oxo-4-phenyloxazolidin-3-yl)butan-2-yl)malonate (68)

Following general procedure B, the reaction was carried out with olefin **61e** (217 mg, 1.00 mmol, 2.0 equiv), xanthate **2'g** (140 mg, 0.50 mmol, 1.0 equiv), 4-*tert*-butylcatechol (249 mg, 1.50 mmol), Et₃B (1.5 mL, 1.50 mmol) in DCM (5.0 mL) and it took 2 h for the reaction to go to completion. Flash chromatography on silica gel

(gradient of diethyl ether/pentane = 1:2 to 1:1) gave the desired product **68** as a colorless oil containing the other diastereoisomer in a 92:8 ratio (diastereomeric ratio was determined by ¹H NMR of the crude reaction mixture) (129 mg, 0.34 mmol, 68% yield of combined diastereoisomers). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.45 – 7.32 (m, 3H), 7.32 – 7.24 (m, 2H), 4.82 (dd, J = 8.8, 4.9 Hz, 1H), 4.58 (t, J = 8.7 Hz, 1H), 4.28 – 4.04 (m, 5H), 3.54 (dd, J = 14.5, 9.6 Hz, 1H), 3.43 (d, J = 7.8 Hz, 1H), 2.80 (dd, J = 14.5, 4.5 Hz, 1H), 2.33 – 2.21 (m, 1H), 1.41 – 1.13 (m, 8H), 0.68 (t, J = 7.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 169.1, 168.6, 158.4, 138.3,

129.5, 129.3, 127.2, 70.0, 61.8, 61.6, 59.5, 54.3, 44.3, 37.4, 23.1, 14.2, 14.1, 11.1. IR (neat, cm⁻¹): 2968, 2935, 2877, 1746, 1725, 1459, 1415, 1368, 1224, 1172, 1155, 1116, 1092, 1065, 1028, 858, 760, 701. HRMS (ESI) Calcd for $C_{20}H_{28}O_6N$: 378.1911 [M+H]⁺, Found: 378.1902. [α]_D = 33.6 (c = 0.200, CHCl₃).

Benzyl 3-(((S)-4-isopropyl-2-oxooxazolidin-3-yl)methyl)-4-methylpentanoate (69)

Following general procedure B, the reaction was carried out with olefin $61f^{19}$ (197 mg, 1.00 mmol, 2.0 equiv), xanthate 2'b (135 mg, 0.50 mmol, 1.0 equiv), 4-*tert*-butylcatechol (249 mg, 1.50 mmol), Et₃B (1.5 mL, 1.50 mmol) in DCM (5.0 mL) and it took 3 h for the reaction to go to completion. Flash chromatography on silica gel

(gradient of diethyl ether/pentane = 2:3 to 1:1) gave the desired product **69** as a colorless oil containing the other diastereoisomer in a 94:6 ratio (diastereomeric ratio was determined by GC analysis of the crude reaction mixture) (60 mg, 0.17 mmol, 35% yield of combined diastereoisomers). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.41 – 7.28 (m, 5H), 5.13 (d, *J* = 12.2 Hz, 1H), 5.04 (d, *J* = 12.2 Hz, 1H), 4.10 – 3.99 (m, 2H), 3.78 (ddd, J = 8.5, 5.0, 3.4 Hz, 1H), 3.48 (dd, *J* = 14.2, 11.3 Hz, 1H), 2.94 (dd, *J* = 14.2, 3.8 Hz, 1H), 2.43 – 2.25 (m, 2H), 2.22 – 2.10 (m, 1H), 2.04 (ddp, *J* = 10.3, 6.9, 3.4 Hz, 1H), 1.75 (pd, *J* = 6.9, 4.0 Hz, 1H), 0.93 (d, *J* = 2.1 Hz, 3H), 0.90 (d, *J* = 2.1 Hz, 3H), 0.88 (d, *J* = 7.0 Hz, 3H), 0.83 (d, *J* = 6.9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 173.7, 158.8, 135.9, 128.7, 128.42, 128.39, 66.6, 62.7, 58.2, 43.8, 38.3, 34.5, 30.0, 27.1, 19.3, 19.0, 17.8, 14.2. IR (neat, cm⁻¹): 2959, 2875, 1739, 1425, 1389, 1370, 1333, 1245, 1156, 1111, 1049, 976, 739, 696. HRMS (ESI) Calcd for C₂₀H₃₀O₄N: 348.2169 [M+H]⁺, Found: 348.2162. [α]_D = 6.8 (c = 0.096, DCM).

Chromatogram of compound 69 and other diastereoisomer:

Peak Number #	Ret. Time	Area %

1	19.64	94.1017
2	19.85	5.8983

Ethyl (R)-3-(((4S,5R)-2-oxo-4,5-diphenyloxazolidin-3-yl)methyl)pentanoate (70)

Under nitrogen, to a solution of olefin **61g** (147 mg, 0.50 mmol, 1.0 equiv) and xanthate **2'a** (208 mg, 1.00 mmol, 2.0 equiv) in dry DCM (5 mL) was added 4-*tert*-butylcatechol (249 mg, 1.50 mmol, 3.0 equiv), followed by slow addition of Et₃B (1.5 mL, 1 M in *n*-hexane) while the needle was immersed in the solution. The

resulting reaction mixture was stirred open to air for 3 h at rt with a CaCl₂ trap. The solution was filtered over a small pad of neutral alox (eluted with ethyl acetate). The filtrate was then concentrated under reduced pressure and purification by flash chromatography on silica gel (gradient of diethyl ether/pentane = 1:3 to 3:7) gave the desired product **70** as a white solid containing the other diastereoisomer in a 86:14 ratio (diastereomeric ratio was determined by ¹H NMR of the crude reaction mixture) (115 mg, 0.30 mmol, 60% yield of combined diastereoisomers). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.13 – 6.98 (m, 6H), 7.02 – 6.95 (m, 2H), 6.90 – 6.77 (m, 2H), 5.79 (d, *J* = 8.1 Hz, 1H), 5.08 (d, *J* = 8.1 Hz, 1H), 4.18 (qd, *J* = 7.1, 4.0 Hz, 2H), 3.56 (dd, *J* = 14.2, 10.7 Hz, 1H), 2.73 (dd, *J* = 14.2, 4.0 Hz, 1H), 2.51 – 2.26 (m, 2H), 2.15 (dtd, *J* = 13.9, 6.4, 4.2 Hz, 1H), 1.36 – 1.20 (m, 2H), 1.29 (t, *J* = 7.1 Hz, 3H), 0.80 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 173.8, 158.7, 134.7, 134.0, 128.5, 128.0, 127.9, 126.1, 79.8, 64.8, 60.8, 46.9, 37.4, 35.0, 25.5, 14.4, 11.0. IR (neat, cm⁻¹): 2961, 2929, 1747, 1733, 1456, 1413, 1374, 1330, 1293, 1229, 1189, 1162, 1035, 1024, 760, 699. HRMS (ESI) Calcd for C₂₃H₂₈O₄N: 382.2013 [M+H]⁺, Found: 382.2019. [α]_D = -18.61 (c = 0.202, CHCl₃). mp: 44.7-45.4 °C.

Benzyl 3-(((4S,5R)-2-oxo-4,5-diphenyloxazolidin-3-yl)methyl)pentanoate (71)

Under nitrogen, to a solution of olefin **61g** (293 mg, 1.00 mmol, 1.0 equiv) and xanthate **2'b** (541 mg, 2.00 mmol, 2.0 equiv) in dry DCM (10 mL) was added 4-*tert*-butylcatechol (499 mg, 3.00 mmol, 3.0 equiv), followed by slow addition of Et₃B (3.0 mL, 1 M in *n*-hexane) while the needle was immersed in the solution. The

resulting reaction mixture was stirred open to air for 2 h at rt with a CaCl₂ trap. The solution was filtered over a small pad of neutral alox (eluted with ethyl acetate). The filtrate was then concentrated under reduced pressure and purification by flash chromatography on silica gel

(gradient of diethyl ether/pentane = 1:4 to 1:2) gave the desired product **71** as a white solid containing the other diastereoisomer in a 89:11 ratio (diastereomeric ratio was determined by ¹H NMR of the crude reaction mixture) (292 mg, 0.66 mmol, 66% yield of combined diastereoisomers). Suitable crystals were obtained upon slow diffusion of pentane in a solution of **71** in ethyl acetate at room temperature. ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.44 – 7.27 (m, 5H), 7.16 – 7.02 (m, 6H), 6.96 (dd, J = 6.8, 2.9 Hz, 2H), 6.83 (dd, J = 6.7, 2.9 Hz, 2H), 5.67 (d, J = 8.1 Hz, 1H), 5.20 (d, J = 12.3 Hz, 1H), 5.13 (d, J = 12.2 Hz, 1H), 5.04 (d, J = 8.1 Hz, 1H), 3.56 (dd, J = 14.2, 10.7 Hz, 1H), 2.73 (dd, J = 14.2, 4.1 Hz, 1H), 2.52 (dd, J = 16.2, 7.1 Hz, 1H), 2.41 (dd, J = 16.2, 5.8 Hz, 1H), 2.24 – 2.07 (m, 1H), 1.29 (dq, J = 8.4, 6.3 Hz, 2H), 0.79 (t, J = 7.4 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 173.5, 158.8, 136.0, 134.7, 134.0, 128.8, 128.5, 128.45, 128.41, 128.0, 127.9, 126.1, 79.7, 66.7, 64.8, 46.9, 37.3, 35.1, 25.5, 11.0. IR (neat, cm⁻¹): 2960, 2907, 2872, 1726, 1543, 1454, 1423, 1343, 1277, 1240, 1193, 1166, 1116, 1066, 1037, 1026, 759, 731, 720, 698. HRMS (ESI) Calcd for C₂₈H₃₀O₄N: 444.2169 [M+H]⁺, Found: 444.2149. [α]_D = -12.09 (c = 0.402, CHCl₃). mp: 68.6-72.0 °C.

X-Ray crystal structure report of 71 (CCDC number: 2031378):

 Table 2.
 Crystal data and structure refinement for 71.

Empirical formula	$C_{112}H_{116}N_4O_{16}$
Formula weight	1774.08

Temperature	173(2) K	
Wavelength	1.54184 Å	
Crystal system	Monoclinic	
Space group	P 21	
Unit cell dimensions	a = 6.1281(2) Å	α=90°.
	b = 27.1638(5) Å	β=91.472(2)°.
	c = 28.2117(7) Å	$\gamma = 90^{\circ}$.
Volume	4694.6(2) Å ³	
Ζ	2	
Density (calculated)	1.255 Mg/m ³	
Absorption coefficient	0.669 mm ⁻¹	
F(000)	1888	
Crystal size	$0.353 \text{ x } 0.076 \text{ x } 0.043 \text{ mm}^3$	
Theta range for data collection	2.258 to 77.191°.	
Index ranges	-7<=h<=7, -18<=k<=33, -34<	=1<=35
Reflections collected	36979	
Independent reflections	13824 [R(int) = 0.0716]	
Completeness to theta = 67.684°	99.9 %	
Absorption correction		
1	Semi-empirical from equivalent	nts
Max. and min. transmission	Semi-empirical from equivalent 1 and 0.32761	nts
Max. and min. transmission Refinement method	Semi-empirical from equivalent 1 and 0.32761 Full-matrix least-squares on F	nts 2
Max. and min. transmission Refinement method Data / restraints / parameters	Semi-empirical from equivalent 1 and 0.32761 Full-matrix least-squares on Fr 13824 / 1 / 1193	nts 2
Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F ²	Semi-empirical from equivalent 1 and 0.32761 Full-matrix least-squares on F 13824 / 1 / 1193 1.037	nts 2
Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F ² Final R indices [I>2sigma(I)]	Semi-empirical from equivalent 1 and 0.32761 Full-matrix least-squares on F ⁴ 13824 / 1 / 1193 1.037 R1 = 0.0553, wR2 = 0.1294	nts 2
Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data)	Semi-empirical from equivalent 1 and 0.32761 Full-matrix least-squares on F 13824 / 1 / 1193 1.037 R1 = 0.0553, wR2 = 0.1294 R1 = 0.0692, wR2 = 0.1370	nts 2
Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter	Semi-empirical from equivalent 1 and 0.32761 Full-matrix least-squares on F 13824 / 1 / 1193 1.037 R1 = 0.0553, wR2 = 0.1294 R1 = 0.0692, wR2 = 0.1370 -0.31(19)	nts 2
Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F ² Final R indices [I>2sigma(I)] R indices (all data) Absolute structure parameter Extinction coefficient	Semi-empirical from equivalent 1 and 0.32761 Full-matrix least-squares on F ² 13824 / 1 / 1193 1.037 R1 = 0.0553, wR2 = 0.1294 R1 = 0.0692, wR2 = 0.1370 -0.31(19) n/a	nts 2

4.3 Modification of Radical Adducts

(3*S*,8*S*,9*S*,10*R*,13*S*,14*S*,17*S*)-10,13-Dimethyl-17-((*R*)-5-oxotetrahydrofuran-2-yl)-2,3,4,7,8,9,1 0,11,12,13,14,15,16,17-tetradecahydro-1*H*-cyclopenta[*a*]phenanthren-3-yl acetate (42)

To an oven-dried round bottom flask was added under nitrogen **39** (125 mg, 0.20 mmol, 1.0 equiv) and dry THF (10.0 mL). To the solution was added via syringe TBAF (1 M in THF, 1.0 mL, 1.00 mmol, 5.0 equiv). After stirring at rt for 24 h, the reaction was quenched with water, followed by extraction with ethyl acetate for 3 times. The combined organic phase was then washed

with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. Purification by flash chromatography on silica gel (gradient of ethyl acetate:heptane = 1:4 to 1:3) gave the major diastereoisomer **42** as a white solid (62 mg, 0.15 mmol, 77%). Suitable crystals were obtained upon slow diffusion of heptane in a solution of **42** in Et₂O at room temperature. ¹H NMR (300 MHz, CDCl₃) δ (ppm) 5.36 (d, *J* = 5.1 Hz, 1H), 4.60 (tdd, *J* = 10.9, 6.6, 4.3 Hz, 1H), 4.41 (ddd, *J* = 10.3, 8.3, 6.2 Hz, 1H), 2.55 – 2.41 (m, 2H), 2.36 – 2.18 (m, 3H), 2.14 (dt, *J* = 12.8, 3.5 Hz, 1H), 2.03 (s, 3H), 2.00 – 1.91 (m, 1H), 1.91 – 1.80 (m, 2H), 1.79 – 1.67 (m, 2H), 1.66 – 1.34 (m, 7H), 1.33 – 0.90 (m, 6H), 1.03 (s, 3H), 0.77 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 177.7, 170.7, 140.0, 122.4, 82.5, 74.1, 56.1, 55.6, 50.2, 42.8, 38.8, 38.3, 37.1, 36.8, 32.1, 31.8, 28.6, 28.2, 27.9, 24.7, 23.9, 21.6, 20.7, 19.5, 12.5. IR (neat, cm⁻¹): 2964, 2937, 2904, 2884, 2868, 2820, 1761, 1729, 1248, 1177, 1038, 975. HRMS (ESI) Calcd for C₂₅H₃₇O₄: 401.2686 [M+H]⁺, Found: 401.2683. mp: 211.4-212.6 °C. [α]_D = -81.0 (c = 0.204, CHCl₃).

X-Ray crystal structure report of 42 (CCDC number: 2031383):

Table 3. Crystal data and structure refinement for 42.

Empirical formula	C25H36O4
Formula weight	400.54
Temperature/K	90.0(9)
Crystal system	monoclinic
Space group	<i>P</i> 2 ₁
a/Å	6.15180(6)
b/Å	60.5855(6)
c/Å	6.15597(7)
α/°	90
β/°	106.5319(11)
$\gamma/^{\circ}$	90
Volume/Å ³	2199.55(4)
Z	4
$\rho_{calc}g/cm^3$	1.210

μ/mm^{-1}	0.634
F(000)	872.0
Crystal size/mm ³	$0.23 \times 0.21 \times 0.06$
Radiation	$CuK\alpha$ ($\lambda = 1.54184$)
2Θ range for data collection/°	4.376 to 148.612
Index ranges	$-7 \le h \le 7, -74 \le k \le 75, -7 \le l \le 7$
Reflections collected	41608
Independent reflections	8784 [$R_{int} = 0.0512$, $R_{sigma} = 0.0327$]
Data/restraints/parameters	8784/1/530
Goodness-of-fit on F ²	1.035
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0455, \mathrm{wR_2} = 0.1155$
Final R indexes [all data]	$R_1 = 0.0486, \mathrm{w}R_2 = 0.1192$
Largest diff. peak/hole / e Å ⁻³	0.26/-0.30
Flack parameter	-0.01(8)

Ethyl 2-((8R,9S,13S,14S,16S,17S)-17-hydroxy-3-methoxy-13-methyl-7,8,9,11,12,

13,14,15,16,17-decahydro-6*H*-cyclopenta[*a*]phenanthren-16-yl)acetate (43)

To an oven-dried round bottom flask was added under nitrogen **41** (247 mg, 0.51 mmol, 1.0 equiv) and dry THF (10.0 mL). To the solution was added via syringe TBAF (1 M in THF, 2.54 mL, 2.54 mmol, 5.0 equiv). After stirring at rt for 7 h, the reaction was quenched with water, followed by extraction with

diethyl ether for 3 times. The combined organic phase was then washed with brine, dried over anhydrous Na₂SO₄, filtered and concentrated under reduced pressure. Purification by flash chromatography on silica gel (ethyl acetate:heptane = 1:4) gave the desired product **43** as a white solid (167 mg, 0.45 mmol, 88%). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 7.20 (dd, *J* = 8.7, 1.0 Hz, 1H), 6.71 (dd, *J* = 8.6, 2.9 Hz, 1H), 6.62 (d, *J* = 2.8 Hz, 1H), 4.16 (q, *J* = 7.2 Hz, 2H), 3.77 (s, 3H), 3.38 (d, *J* = 7.3 Hz, 1H), 2.85 (q, *J* = 5.4, 4.9 Hz, 2H), 2.54 (d, *J* = 7.7 Hz, 2H), 2.33 – 2.16 (m, 3H), 1.98 (dt, *J* = 12.5, 3.3 Hz, 1H), 1.89 – 1.67 (m, 2H), 1.58 – 1.21 (m, 7H), 1.27 (t, *J* = 7.2 Hz, 3H), 0.85 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ (ppm) 174.5, 157.6, 138.0, 132.7, 126.5, 114.0, 111.6, 87.7, 60.8, 55.3, 48.5, 44.6, 44.1, 40.5, 40.1, 38.6, 37.0, 30.9, 29.9, 27.4, 26.3, 14.4, 12.1.

IR (neat, cm⁻¹): 3454, 2926, 2868, 1733, 1714, 1608, 1498, 1254, 1236, 1034. HRMS (ESI) Calcd for C₂₃H₃₃O₄: 373.2373 [M+H]⁺, Found: 373.2367. mp: 78.2-80.6 °C. [α]_D = +67.4 (c = 0.202, CHCl₃).

Ethyl (R)-3-(((tert-butoxycarbonyl)amino)methyl)pentanoate (72)

Pearlman's catalyst (20 wt% Pd(OH)₂ on carbon, 35 mg, 0.05 mmol, 50 mol%) was added to a solution of **70** (38 mg, 0.10 mmol, 1.0 equiv) and di-*tert*-butyldicarbonate (66 mg, 0.30 mmol, 3.0 equiv) in absolute ethanol (10.0 mL). The mixture was then

purged with H₂ twice followed by pressurizing to 30 psi of H₂. The reaction was stirred at rt for 40 h, subsequently filtered through Celite and rinsed with ethyl acetate. The filtrate was evaporated under reduced pressure. Purification by flash chromatography on silica gel (ethyl acetate:heptane = 1:6) gave the desired product **72** as a colorless oil (22 mg, 0.085 mmol, 85%). ¹H NMR (300 MHz, CDCl₃) δ (ppm) 4.66 (br, 1H), 4.13 (q, *J* = 7.1 Hz, 2H), 3.19 (dt, *J* = 11.7, 5.6 Hz, 1H), 3.04 (dt, *J* = 13.7, 6.9 Hz, 1H), 2.28 (dd, *J* = 6.7, 2.0 Hz, 2H), 1.95 (hept, *J* = 6.7 Hz, 1H), 1.43 (s, 9H), 1.41 – 1.29 (m, 2H), 1.26 (t, *J* = 7.1 Hz, 3H), 0.92 (t, *J* = 7.4 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ (ppm) 173.4, 156.2, 79.3, 60.5, 43.9, 37.6, 37.0, 28.5, 25.0, 14.4, 11.2. IR (neat, cm⁻¹): 3371, 2968, 2933, 2878, 1714, 1695, 1516, 1365, 1248, 1164, 1035. HRMS (ESI) Calcd for C₁₃H₂₆O₄N: 260.1856 [M+H]⁺, Found: 260.1860. [α]_D = -1.8 (c = 0.250, CHCl₃).

5 Spectra

1-Acetyl-3-vinylimidazolidin-2-one (44f)

... ا

_0

-9

-20

-8

-4

-20

-09

-2

-8

-6

100

130

140

150

160

170

180

190

210 200

3-(Cyclohex-1-en-1-yl)oxazolidin-2-one (44k)

56

_0

-9

-20

-8

-6

-20

-09

-2

-80

-6

100

110 f1 (ppm)

120

130

140

150

160

170

180

190

200

210

(*S*)-4-Benzyl-3-(prop-1-en-2-yl) oxazolidin-2-one (**61b**)

_0

-9

20

-8

-6

-22

-99

-2

-8

-06

100 f1 (ppm)

110

120

130

140

150

160

170

180

190

53.84 CD2CI2

60

Γï

Ļο

-9

-20

-8

-6

-20

-09

-2

-8

-6

100

110 f1 (ppm)

120

130

140

150

160

170

180

190

200

210

¹H NMR (300 MHz, CDCl₃)

(4S,5R)-3-((E)-But-1-en-1-yl)-4,5-diphenyloxazolidin-2-one (**61g**)

4-Ethoxy-4-oxobutyl benzoate (3)

4-(Benzyloxy)-4-oxobutyl benzoate (4)

1.0 1.5 2.0 <u></u>-₽0.2 2.5 ₽2'Z \ 92'Z \ 62'Z \ <u></u>−z0.2 о. С 3.5 -4.0 4.5 f1 (ppm) 84.4 \ 84.4 \ 44.4 \ F-20.5 5.0 5.5 6.0 6.5 7.0 ₹ - 20.4 7 - 20.4 20.1 20.1 1 - 20.0 7.5 8.0 <u></u>–96.1 0 8.5 9.0 0: 9.5 Lo:

4-Oxo-4-phenoxybutyl benzoate (5)

69

۲Ţ

-0.5

0.0

0.5

4-Oxo-4-phenoxybutyl benzoate (5)

70

Γï

_0

-9

-20

-8

-4

-20

-9

-20

-8

-6

100

110 f1 (ppm)

120

130

140

150

160

170

180

190

200

210

220

¹H NMR (300 MHz, CDCl₃)

Benzyl 4-acetoxybutanoate (6)

Benzyl 4-acetoxybutanoate (6)

72

Γï

_0

-9

-20

-8

-6

-22

-9

-2

-8

-6

100

f1 (ppm)

120

130

140

150

160

170

180

190

200

210

220

Phenyl 4-acetoxybutanoate (7)

74

Г [.]..

_0

-9

-20

-02

-6

-20

-09

-2

-8

-6

100

110 f1 (ppm)

120

130

140

150

160

170

180

190

200

210

220

۲e

4-Ethoxy-3-methyl-4-oxobutyl benzoate (8)

4-Ethoxy-3-methyl-4-oxobutyl benzoate (8)

2-(2-Oxotetrahydrofuran-3-yl)ethyl benzoate (9)

4-Ethoxy-3,3-difluoro-4-oxobutyl benzoate (10)

¹H NMR (300 MHz, CDCl₃)

4-Ethoxy-3,3-difluoro-4-oxobutyl benzoate (10)

-9

-20

-8

-6

50-

-99

-2

-8

-6

110

120

130

140

150

160

170

180

100 f1 (ppm)

=0

 \cap

∑ Ne

Re

0=

<u></u>-68.≯

7.5

8.0

8.5

-0.6

9.5

0.0

<u></u>-60.ε

81

Τ

Benzyl 4-acetoxypentanoate (11)

Phenyl 4-acetoxypentanoate (12)

_0

-8

-6

-20

-09

-8

-06

Benzyl 2-(2-acetoxycyclopentyl)acetate (14)

Benzyl 2-(2-acetoxycyclopentyl)acetate (14)

88

Γï

_0

-9

-20

-8

-6

-22

-9

-2

-8

-06

100

f1 (ppm)

120

130

140

150

160

170

180

190

200

210

Benzyl 2-(2-acetoxycyclohexyl)acetate (15)

Benzyl 2-(2-acetoxycyclohexyl)acetate (15)

¹H NMR (300 MHz, $CDCl_3$)

Benzyl 4-((diethoxyphosphoryl)oxy)butanoate (16)

92

Г [.]..

-0

10-

20-

-8

-6

50

-09

-2

-8

-6

100

f1 (ppm)

120

130

140

150

160

170

180

190

200

210

220

-M

Ethyl 4-(phenylthio) butanoate (18)

Ethyl 4-(phenylthio) butanoate (18)

- ''

_0

10-

20-

-20

-2

-06

f1 (ppm)

Benzyl 4-(phenylthio)butanoate (19)

~

¹H NMR (300 MHz, $CDCl_3$)

0=

3-(2-(Phenylthio)ethyl)dihydrofuran-2(3H)-one (22)

3-(2-(Phenylthio)ethyl)dihydrofuran-2(3H)-one (22)

Ethyl 2,2-difluoro-4-(phenylthio)butanoate (23)

Diethyl 2-(2-(phenylthio)ethyl) malonate (24)

106

۲o

10

20

30

-4

-20

-09

-20

-8

-6

100 f1 (ppm)

110

120

130

140

150

160

170

180

190

Benzyl 4-(phenylthio)pentanoate (25)

108

_0

-1

-8

-4

-09

-6

120

150

160

OnBu

BnO

0=

Benzyl 4-butoxybutanoate (27)

Diethyl 2-(2-butoxyethyl)malonate (28)

... ا

_0

-9

50

-9

-6

20-

-09

-2

-8

-6

100

f1 (ppm)

120

130

140

150

160

170

180

190

200

210

220

۲e

¹H NMR (300 MHz, CDCl₃)

-09

Cyclohex-2-enyl 4-butoxybutanoate (30)

¹³C NMR (75 MHz, CDCl₃) 78 77 78 75 71 08 29 69 19 20 91 8Z Cyclohex-2-enyl 4-butoxybutanoate (30) OBu \langle $\circ \preccurlyeq$

6'EI — 8'B1 > 8'F2 > E'82 — F'IE >	
6 ⁷ 29 ~ 9 ⁷ 69 ~ 9 ⁹ 90 / 9 ⁹ 92 ~ 9 ⁹ 22 ~ 9 ⁷ 22 /	
-521 —	
— 132	

F

110 100 f1 (ppm)

¹³C NMR (75 MHz, CDCl₃)

Ethyl 4-(cyclohexyloxy)-2-methylbutanoate (**31**)

¹H NMR (300 MHz, CDCl₃)

Benzyl 4-methoxypentanoate (32)

Benzyl 4-methoxypentanoate (32)

... ا

_0

-9

-20

-8

-6

20-

-09

-2

-80

-6

110 100 f1 (ppm)

120

130

140

150

160

170

180

190

200

210

-0.5

 13 C NMR (75 MHz, CDCl₃)

Diethyl 2-(1-ethoxypropan-2-yl)malonate (33)

Benzyl 2-(tetrahydrofuran-3-yl)acetate (35)

0

0=

BnO

¹³C NMR (75 MHz, CDCl₃)

Benzyl 2-(tetrahydrofuran-3-yl)acetate (35)

Benzyl 5,5-dimethyl-4-((trimethylsilyl)oxy)hexanoate (38)

77

-0.5

Benzyl 4-((3S,8S,9S,10R,13S,14S,17S)-3-acetoxy-10,13-dimethyl-2,3,4,7,8,9,10,11, 12, 13, 14, 15, 16, 17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)-4-((*tert*butyldimethylsilyl)oxy)butanoate (39)

f1 (ppm)

ြက

Diethyl 2-(2-(trimethylsilyloxy)cyclohexyl) malonate (40)

¹H NMR (300 MHz, CDCl₃)

		133
	5171 9171 - 1718 - 1718 - 1716 - 1717 - 1727 - 172	-0.5
50 ^{.0} — — — — — — — — — — — — — — — — — — —		₹ 11.2 0.6
	0'83 T 1'22 C 0'84 T 1'22 C 0'84 C 1'29 C 10 C 1'20 C 10 C 1'20 C 10 C 1'20 C 10 C 1'20 C 1'2	0.5
	67 1 1 2 3 6 7 7 7 3 6 7 7 7 3 6 7 7 7 7 7 7 7 7	
	2ε·T 2ε·T εε·T 68·0 68·0	۲. ۲.
	96'T / 96'T / 86'T /	-85.02 -80.50
	66:T - Tb'T - Tb'T -	
	לא 72-17 12-17 12-17 12-17 12-17 12-17 12-17 12-17 12-17	2.5
	- 3'45 - 1'49 - 3'20 - 1'42 - 3'25 - 1'46 - 1'46	3.0
	ا عاد 1 	
		= <u></u> = 00'T = }
	S9'T - ST'+J 99'T - ST'+J 99'T - 91'+J 70'T - 2T'+-	f1 (p
	89'T 81'+ - 89'T 81'+ - 69'T 61'+ - 02'T 02'T -	5.0
		5.5
	52'T - 22'T - 82'T -	- 0.9
	62 T 62 T 18 T 28 T	
	- 1'83 - 1'84 - 1'84 - 1'84	
	- 1.88 - 1.88 7.89	
	68'1 - 16'1 - 16'1 - 26'1 -	7.5
	- 1'63 - 1'64 - 1'64 - 1'64	-0.8
	1 02 - T - - 500 - 500	8.5
E V R	- 2'01 - 2'02 - 2'03	
≊o≓ ō ō →	- 2.06 - 2.09 - 2.02	
ŏ (ŏ	5:00 - 2:02 - 2:12 - 2:17	- 6
	21 0	

¹³C NMR (75 MHz, CDCl₃)

134

Г '''

_0

-9

20

-02

-4

-22

-9

-2

80

-6

100

110 f1 (ppm)

120

130

140

150

160

170

180

190

200

210

220

nethyl-	41)	08'0] 16'0] 26'0] 26'0 - 46'0 - 21'1] 81'1 - 61'1 - 12'1 - 12'1 - 52'1 - 92'1 - 92'1 -		90 20	.0 .0 .0		Ŀ-79.2	0.5 0.0 -0.5 -1
<pre>xrt-butyldimethylsilyl)oxy)-3-methoxy-13-m</pre>	f-cyclopenta[a]phenanthren-16-yl)acetate (d	27.1 87.1 87.1 17.1	¹ H NMR (300 MHz, CDCl ₃)	۲۲.۲ ۲ ۲۲.۲ ۲ ۲۲.۲ ۲ ۲۲.۲ ۲ ۲۲.۲ ۲ ۲۲.۲ ۲ ۲.۲ ۲ ۲.۲ ۲ ۲.۲ ۲ ۲.۲ ۲ ۲.7 ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲ ۲	1.20 1.15	51.5 91.5 91.5 91.5 12.5 25.5 25.5	F-28.5 F-01.6 F-28.1 F-28.1 F-28.1 F-28.1 F-28.1 F-28.2 F-20.1 F-28.2 F-20.2 F-00.2) 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 f1 (ppm)
Ethyl 2-((8R,9S,13S,14S,16S,17S)-17-((tei	7,8,9,11,12,13,14,15,16,17-decahydro-6H		O H H H H O OEt	12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 14 14 14		e ^{ee3} e ^{e23} e ²¹⁸ e ²³ 5 ¹⁸ 5 ¹⁸ 5 ¹⁸	₽-26:0 ₽-20:1	0.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0

¹H NMR (300 MHz, CDCl₃)

щÓ

Γï

_0

-10

-20

-8

-6

-20

60

-2

-8

-06

100

f1 (ppm)

120

130

140

150

160

170

180

190

200

210

220

-M

Phenyl 4-(2-oxopyrrolidin-1-yl)butanoate (50)

1.81

9.22

1.15 7.15

ε.74 —

وفحاجا بالمتعاصلية أعاناته عاراته بالأنباب الأرامي الزارية والمروعا وا

فنا أقبر بالالعماظ ورأط لقساء ببراط بالبالي ور

وأرادا الملاط ومعاوليا والمارية المراجع والمستعما وليغتم وتقويه والمراجع والمراجع

تفقيدنا ضب ينقدوان الارم أومنأ ينابرها أحليم والمريرية بالمراري المريي

asida temperatura da seguna da

8.0ZI

7.171

₽.271

Benzyl 4-(N-phenylacetamido)butanoate (51)

Benzyl 4-(N-phenylacetamido)butanoate (51)

_0

10

20

-8

-6

-22

-09

-20

-8

-6

100

110 f1 (ppm)

120

130

140

150

160

170

180

190

200

210

Benzyl 3-methyl-4-(2-oxopyrrolidin-1-yl)butanoate (53)

Benzyl 3-methyl-4-(2-oxopyrrolidin-1-yl)butanoate (53)

Benzyl 4-(2-oxooxazolidin-3-yl)butanoate (54)

ГТ

_0

-9

-8

-6

-09

-2

-8

-6

Benzyl 3-(2-(benzyloxy)-2-oxoethyl)piperidine-1-carboxylate (57)

¹H NMR (300 MHz, CDCl₃)

Benzyl 3-methyl-4-(2-oxooxazolidin-3-yl)pentanoate (59) 1st diastereoisomer

Benzyl 3-methyl-4-(2-oxooxazolidin-3-yl)pentanoate (59) 2nd diastereoisomer

Re

0=

ò

Μe

168

-10

_0

-9

-20

-8

-6

-22

-09

-2

-8

-6

Benzyl 2-(2-(2-oxooxazolidin-3-yl)cyclohexyl)acetate (60) *1st diastereoisomer*

¹H NMR (300 MHz, CDCl₃)

170

Γï

-0

-10

-20

-02

-6

-22

60

-2

-8

-6

100

110 f1 (ppm)

120

130

140

150

160

170

180

190

200

210

220

Benzyl 2-(2-(2-oxooxazolidin-3-yl)cyclohexyl)acetate (60) 2nd diastereoisomer

- 2,26 - 2,30 - 2,31 - 2,32 - 2,32 - 2,33 - 2,33 - 2,33 - 2,33 - 2,33 - 2,33 - 2,32 - 2,32 - 2,32 - 2,32 - 2,32 - 2,32 - 2,32 - 2,33 -

lst diastereoisomer

Ethyl 4-((*S*)-2-oxo-4-phenyloxazolidin-3-yl)pentanoate (**62**) *Ist diastereoisomer*

174

Г [.]...

_0

-9

-20

-8

-6

-20

-09

-2

-8

-06

100

110 f1 (ppm)

120

130

140

150

160

170

180

190

200

210

220

Ethyl 4-((*S*)-2-oxo-4-phenyloxazolidin-3-yl)pentanoate (**62**)

СH₃

27.2 CDCl3

1.6

8.85 8.82

4·04

2.03 0.7ð

- 20.0 -- 56.2 Γï

_0

-9

-20

-8

-4

-20

-9

-20

-8

-6

120

130

140

150

160

170

180

190

200

210

220

۲ ۳

Ļά

0.0

.0 .5

1.0

1.5

2.0

2.5

. Э.О.

ы. С

4.0

5.0 4.5 f1 (ppm)

ы С

0.0

6.5

7.0

7.5

0.0

ю О

- 0.6

- 0 2

te ¹³ C NMR (75 MHz, C)	CE+Z+FI		
Ethyl 4-((S)-4-benzyl-2-oxooxazolidin-3-yl)pentanoat (63- diastereomeric mixture)	$\frac{132,2475}{128,9689}$		

180

-9

-8

-8

-4

-23

80 70 60

-8

¹³C NMR (75 MHz, CDCl₃)

Benzyl 4-((S)-4-isopropyl-2-oxooxazolidin-3-yl)pentanoate (64)

Benzyl 3-(((S)-4-isopropyl-2-oxooxazolidin-3-yl)methyl)pentanoate (**65**) ¹H NMR (300 MHz, CDCl₃)

¹H NMR (300 MHz, CDCl₃) Benzyl 3-(((S)-2-oxo-4-phenyloxazolidin-3-yl)methyl)pentanoate (66) Major diastereoisomer

OBn

0

 \cap

...

_0

-9

-20

-8

-6

-20

-09

-2

-8

-6

100

110 f1 (ppm)

120

130

140

150

160

170

180

190

200

210

Benzyl 3-(((4S,5R)-2-oxo-4,5-diphenyloxazolidin-3-yl)methyl)pentanoate ¹H NMR (300 MHz, CDCl₃) (**71**)

(3S,8S,9S,10R,13S,14S,17S)-10,13-Dimethyl-17-((R)-5-oxotetrahydrofuran-2-yl)-2,3,4,7,8,9, 10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl acetate (42)

<u>ار ا</u>

.0

-8

20-

-09

-2

-06

f1 (ppm)

Ethyl 2-((8R,9S,13S,14S,16S,17S)-17-hydroxy-3-methoxy-13-methyl-7,8,9,11,12, 13, 14, 15, 16, 17-decahydro-6H-cyclopenta[a]phenanthren-16-yl)acetate (43)

¹³C NMR (75 MHz, CDCl₃)

¹H NMR (300 MHz, CDCl₃)

