Supplementary Information

Low Temperature Methanation of CO₂ over an Amorphous Cobalt-based Catalyst

Jinghui Tu,^a Haihong Wu,^{a*} Qingli Qian,^{b*} Shitao Han,^a Mengen Chu,^a Shuaiqiang Jia,^a Ruting Feng, ^a Jianxin Zhai,^a Mingyuan He,^a Buxing Han^{a,b*}

[a] Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and MolecularEngineering, East China Normal University, Shanghai 200062, P. R. China

[b] Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and

Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry,

Chinese Academy of Sciences, China

E-mail: hhwu@chem.ecnu.edu.cn; qianql@iccas.ac.cn; hanbx@iccas.ac.cn

Figures and Tables

Figure S1. The N₂ adsorption isotherm and pore diameter distribution for the catalysts (A) Co-B-O, (B) Co- $Zr_{0.05}$ -B-O, (C) Co- $Zr_{0.1}$ -B-O, (D) Co- $Zr_{0.3}$ -B-O.

Figure S2. The HAADF-STEM images and EDS mapping of B, O, Co and Zr on the Co- $Zr_{0.1}$ -B-O catalyst.

Figure S3 XPS spectra of the Co-Zr_x-B-O catalysts: (A) Co2p; (B) O1s; (C) Zr3d; (D) B1s. The data were fitted according to literature.^[1]

Figure S4. The FTIR spectra of the Co-Zr_{0.1}-B-O catalysts. The peak positions of O-H deformation and stretching are the same as those in the literature.^[2]

Figure S5. The XRD spectra of the Co- $Zr_{0.1}$ -B-O catalyst after treating in flowing H₂ at different temperature.

Figure S6. Impact of P_{CO2}/P_{H2} ratio upon the reaction. Conditions: Co-Zr_{0.1}-B-O catalyst 40 mg, cyclohexane 2 mL, initial pressure 8.0 MPa, 180 °C, 12 h.

Figure S7. Impact of total pressure on the reaction. Conditions: Co-Zr_{0.1}-B-O catalyst 40 mg, cyclohexane 2 mL, P_{CO2}/P_{H2}=1, 180 °C, 12 h.

Figure S8. The results of the reaction in different solvents. Conditions: Co-Zr_{0.1}-B-O catalyst 40 mg, solvent 2 mL, 4 MPa CO₂, 4 MPa H₂, 180 °C, 12 h.

Figure S9. Time course of the reaction. Conditions: Co-Zr_{0.1}-B-O catalyst 40 mg, cyclohexane 2 mL, 4 MPa CO₂, 4 MPa H₂, 180 °C.

Figure S10. Results of the recycling test of the catalyst. Conditions: Co- $Zr_{0.1}$ -B-O catalyst 40 mg, cyclohexane 2 mL, 4 MPa CO₂, 4 MPa H₂, 180 °C, 12 h.

Figure S11. The HAADF-STEM images and EDS mapping of B, O, Co and Zr on the catalyst after five cycles.

Figure S12. XPS characterization of the Co- $Zr_{0.1}$ -B-O catalyst after adsorption of H₂ or CO₂ at elevated temperature: (A) Co 2p, (B) Zr 3d, (C) B 1s, (D) O1s.

I: The catalyst was pretreated in a reactor with 4 MPa H₂ at 180 °C for 2 h and then cooled to room temperature;

II: After step I the H₂ was released and replaced by 4 MPa CO₂, after the reactor was kept at 180 °C for 1 h it was cooled to room temperature.

After the adsorption, the catalyst samples in the reactors were quickly transferred into the chamber of the XPS spectrometer.

Figure S13. In situ FTIR spectra obtained during CO_2 adsorption on the Co- $Zr_{0.1}$ -B-O catalyst. The catalyst was pretreated by H₂ at 180 °C for 2 h before the CO_2 adsorption. The black line is the background spectrum scanned before CO_2 was introduced.

Figure S14. In situ FTIR spectra during reaction of CO₂ and H₂ over the Co- $Zr_{0.1}$ -B-O catalyst. At 20 °C, CO₂ was firstly added, then CO₂ and H₂ were introduced together. The temperature was elevated from 20 to 180 °C at the rate of 5 °C /min and kept at 180 °C for 30 min. The black line is the background spectrum scanned at 20 °C before CO₂ was introduced.

Figure S15. In situ FTIR spectra of the Co- $Zr_{0.1}$ -B-O catalyst during heating at a rate of 10 °C/min in N₂ flow. The background spectrum was scanned at 30 °C.

Figure S16. XPS characterization of the Co-Zr_{0.1}-B-O catalyst after CO₂ methanation. Conditions: Co-Zr_{0.1}-B-O catalyst 40 mg, cyclohexane 2 mL, 4 MPa CO₂, 4 MPa H₂, 180 °C, 12 h. The sample was obtained after releasing the gases of the cooled reactor.

Entry	Catalyst	<i>Т</i> (°С)	Best data in the Reference	Normalized activity (mmol _{co2} ·g _{cat} -1h ⁻¹)	CH ₄ %	Ref.
1	Ru(NC)/CeO ₂	190	7.41×10 ⁻³ s ⁻¹	6.8	>98	[3]
2	Rh(3 wt.%)/TiO ₂	150	$0.143 \times 10^{-2} \text{ mol}_{CH4} \text{ mol}_{Rh}^{-1} \text{ s}^{-1}$	1.5	100	[4]
3	Ru/[BMIM]BF ₄ /SiO ₂	250	70% (CO ₂ conversion)	5.1	100	[5]
4	RuNPs in [C ₈ mim][NfO]	150	3.25 h ⁻¹ (84% yield)	n/a	100	[6]
5	Ru/TiO ₂ (B)	160	1.5×10 ⁻² S ⁻¹	2.4	100	[7]
6	RuNPs in [omim][NTf ₂]	150	72 (TON), 69% (yield)	29.7	100	[8]
7	$Rh-Pd/\gamma-Al_2O_3$	200	0.309 umol g _{cat} ⁻¹ s ⁻¹ (0.318×10 ⁻² mol _{CH4} mol _{Rh} ⁻¹ s ⁻¹)	1.1	100	[9]
8	3Ru-30Ni/Ce _{0.9} Zr _{0.1} O ₂	230	98.2% (CO ₂ conversion)	21.0	100	[10]
9	$Ru/30\%CeO_2/Al_2O_3$	250	6.2 mL min ⁻¹ g_{cat}^{-1}	16.6	\approx 100	[11]
10	Rh/γ-Al ₂ O ₃ :Ni/AC	125	9.5 umol g ⁻¹	n/a	100	[12]
11	Co-Zr _{0.1} -B-O	180		10.7	97.8	This work

Table S1. The representative results of CO_2 methanation at low temperature ($\leq 250 \text{ °C}$).

The activities of some results are converted to $mmol_{CO2} \cdot g_{cat}^{-1}h^{-1}$ based on the data given in the literatures, and the detailed procedures are given below.

n/a represents "not available" because of lacking some key parameter for calculation.

Ru(NC)/CeO₂ (Ref. 3):

 $7.41 \times 10^{-3} \text{ s}^{-1} \times 3600 \text{ s/h} \div 101.1 \text{ g/mol}_{Ru} \times 0.0256 \text{ g}_{Ru}/\text{g}_{cat} \times 1000 \text{ mmol/mol} = 6.8 \text{ mmol}_{CO2} \cdot \text{g}_{cat}^{-1} \text{h}^{-1}$

Rh(3 wt.%)/TiO₂ (Ref. 4):

 $0.143 \times 10^{-2} \text{ mol}_{CH4} \text{ mol}_{Rh^{-1}} \text{ s}^{-1} \times 3600 \text{ s/h} \div 102.9 \text{ g/mol}_{Rh} \times 0.03 \text{ g}_{Rh}/\text{g}_{cat} \times 1000 \text{ mmol/mol} = 1.5 \text{ mmol}_{CO2} \cdot \text{g}_{cat}^{-1} \text{h}^{-1}$

Ru/[BMIM]BF₄/SiO₂ (Ref. 5):

2400 h⁻¹ (GHSV) × I L_{cat} ÷ 22.4 L/mol × 15 (CO₂)% × 70 (conv.)% ÷ (1 L_{cat} × 2200 g_{cat}/L) × 1000 mmol/mol = 5.1 mmol_{CO2}·g_{cat}·¹h⁻¹ (The catalyst density was not available and was supposed to be the density of SiO₂ support because of the low Ru loading.)

Ru/TiO₂ (B) (Ref. 7):

 $1.5 \times 10^{-2} \text{ s}^{-1} \times 1.55 \text{ m}^2 g_{\text{cat.}}^{-1} \times 0.1739 \times 10^{20} \div (6.02 \times 10^{23} \text{ atom/mol}) \times 1000 \text{ mmol/mol} \times 3600 \text{ s/h} = 2.4 \text{ mmol}_{\text{CO2}} \cdot g_{\text{cat.}}^{-1} \text{h}^{-1} \times 1.55 \text{ m}^2 g_{\text{cat.}}^{-1} \times 1.55 \text{ m}^2 g_{\text{cat.$

RuNPs in [omim][NTf2] (Ref. 8):

72 mol_{CH4} mol_{Ru}⁻¹ \div 101.1 g/mo1_{Ru} \div 24h × 1000 mmol/mol = 29.7 mmol_{CO2} · g_{cat}⁻¹h⁻¹

$Rh-Pd/\gamma-Al_2O_3$ (Ref. 9):

0.309 umol $g_{cat}^{-1} s^{-1} \times 3600 s/h \div 1000 umol/mmol = 1.1 mmol_{CO2} \cdot g_{cat}^{-1} h^{-1}$

(The reaction rate with the unit of umol $g_{cat}^{-1}s^{-1}$ was obtained directly from Table 1 of the Ref. 9)

3Ru-30Ni/Ce_{0.9}Zr_{0.1}O₂ (Ref. 10):

2400 mL g⁻¹h⁻¹ \div 22.4 mL/mmol \times 20%_{CO2} \times 98.2%_{conv.} = 21.0 mmol_{CO2} \cdot g_{cat} \cdot ⁻¹h⁻¹

Ru/30%CeO₂/Al₂O₃ (Ref. 11):

6.2 mL min⁻¹ $g_{cat}^{-1} \div$ 22.4 mL/mmol × 60 min/h = 16.6 mmol_{CO2} $\cdot g_{cat}^{-1}h^{-1}$

Catalant		Surface composition (atom%) ^a				Catalytic
Catalyst	Со	Zr	В	0	(m ² g ⁻¹)	activity ^b
Со-В-О	7.7	-	3.6	88.7	18.8	0.9
Co-Zr _{0.05} -B-O	30.4	1.6	14.7	53.3	32.0	8.2
Co-Zr _{0.1} -B-O	34.7	5.1	18.9	41.3	92.4	10.7
Co-Zr _{0.3} -B-O	16.5	6.6	13.2	63.7	20.0	5.8

Table S2. Impact of Zr content on the structure and performance of the catalysts.

^a The data were from XPS analysis, indicating the atomic percentage in total surface atoms.

^b The unit of the activity is $mmol_{CO2} g_{cat}$ ⁻¹ h⁻¹, which was obtained at the same condition to that in Figure 1.

Catalust	O 1s %				
Catalyst –	Lattice O	Surface O	В-О		
Со-В-О	6.2	51.3	42.5		
Co-Zr _{0.05} -B-O	45.5	41.7	12.8		
Co-Zr _{0.1} -B-O	36.2	47.7	16.1		
Co-Zr _{0.3} -B-O	35.0	40.5	24.5		
Co-Zr _{0.1} -B-O-5r	33.9	51.6	14.5		

The data of oxygen states were obtained from the XPS characterization of different catalysts.

Table S4. Result of the	e CO hydrogenation over	r the Co-Zr _{0.1} -B-O catalyst.
-------------------------	-------------------------	---

Product selectivity (%)				CO	Activity	
methane	ethane	propane	CO ₂	(%)	(mmol _{co} g _{cat} ⁻¹ h ⁻¹)	
26.2	4.3	4.4	65.1	0.7	0.4	

Conditions: catalyst 40 mg, cyclohexane 2 mL, 4 MPa CO, 4 MPa H₂, 180 $^{\circ}$ C, 12 h.

Reference

- 1. J. Masa, P. Weide, D. Peeters, I. Sinev, W. Xia, Z. Sun, C. Somsen, M. Muhler and W. Schuhmann, *Adv. Energy Mater*, 2016, **6**, 1502313.
- 2. U. B. Demirci and P. Miele, *Phys Chem Chem Phys*, 2010, **12**, 14651.
- Y. Guo, S. Mei, K. Yuan, D. J. Wang, H. C. Liu, C. H. Yan and Y. W. Zhang, Low-Temperature CO₂ Methanation over CeO₂-Supported Ru Single Atoms, Nanoclusters, and Nanoparticles Competitively Tuned by Strong Metal–Support Interactions and H-Spillover Effect, ACS Catal. 2018, 8, 7, 6203.
- 4. A. Karelovic and P. Ruiz, Mechanistic study of low temperature CO₂ methanation over Rh/TiO₂ catalysts, *J. Catal.*, 2013, **301**, 141.
- X. P. Guo, Z. J. Peng, A. Traitangwong, G. Wang, H. Y. Xu, V. Meeyoo, C. S. Li and S. J. Zhang, Ru nanoparticles stabilized by ionic liquids supported onto silica: highly active catalysts for low-temperature CO₂ methanation, *Green Chem.*, 2018, **20**, 4932.
- C. I. Melo, D. Rente, M. N. da Ponte, E. Bogel-Lukasik and L. C. Branco, Carbon Dioxide to Methane Using Ruthenium Nanoparticles: Effect of the Ionic Liquid Media, ACS Sustainable Chem. Eng., 2019, 7, 11963.
- T. Abe, M. Tanizawa, K. Watanabe and A. Taguchi, CO₂ methanation property of Ru nanoparticle-loaded TiO₂ prepared by a polygonal barrel-sputtering method, *Energy Environ. Sci.*, 2009, 2, 315.
- 8. C. I. Melo, A. Szczepanska, E. Bogel-Lukasik, M. Nunes da Ponte and L. C. Branco, Hydrogenation of Carbon Dioxide to Methane by Ruthenium Nanoparticles in Ionic Liquid, *ChemSusChem*, 2016, **9**, 1081.
- 9. A. Karelovic and P. Ruiz, Improving the Hydrogenation Function of Pd/gamma-Al₂O₃ Catalyst by Rh/gamma-Al₂O₃ Addition in CO₂ Methanation at Low Temperature, *ACS Catal.*, 2013, **3**, 2799.
- X. Shang, D. Deng, X. Wang, W. Xuan, X. Zou, W. Ding and X. Lu, Enhanced low-temperature activity for CO₂ methanation over Ru doped the Ni/Ce_xZr_(1-x)O₂ catalysts prepared by one-pot hydrolysis method, *Int. J. Hydrogen Energy*, 2018, **43**, 7179.
- S. Tada, O. J. Ochieng, R. Kikuchi, T. Haneda and H. Kameyama, Promotion of CO₂ methanation activity and CH₄ selectivity at low temperatures over Ru/CeO₂/Al₂O₃ catalysts, *Int. J. Hydrogen Energy*, 2014, **39**, 10090.
- 12. C. Swalus, M. Jacquemin, C. Poleunis, P. Bertrand and P. Ruiz, CO₂ methanation on Rh/r-Al₂O₃ catalyst at low temperature: "In situ" supply of hydrogen by Ni/activated carbon catalyst, *Appl. Catal., B*, 2012, **125**, 41.