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Figures and Tables
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Figure S1. The N2 adsorption isotherm and pore diameter distribution for the catalysts (A) Co-B-O, (B) Co-Zr0.05-B-O, (C) Co-Zr0.1-B-O, 

(D) Co-Zr0.3-B-O.
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Figure S2. The HAADF-STEM images and EDS mapping of B, O, Co and Zr on the Co-Zr0.1-B-O catalyst.
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Figure S3 XPS spectra of the Co-Zrx-B-O catalysts: (A) Co2p; (B) O1s; (C) Zr3d; (D) B1s. The data were fitted according to literature.[1] 
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Figure S4. The FTIR spectra of the Co-Zr0.1-B-O catalysts. The peak positions of O-H deformation and stretching are the same as those 

in the literature.[2] 
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Figure S5. The XRD spectra of the Co-Zr0.1-B-O catalyst after treating in flowing H2 at different temperature.
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Figure S6. Impact of PCO2/PH2 ratio upon the reaction. Conditions: Co-Zr0.1-B-O catalyst 40 mg, cyclohexane 2 mL, initial pressure 8.0 

MPa, 180 oC, 12 h.
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Figure S7. Impact of total pressure on the reaction. Conditions: Co-Zr0.1-B-O catalyst 40 mg, cyclohexane 2 mL, PCO2/PH2=1, 180 oC, 12 

h.
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Figure S8. The results of the reaction in different solvents. Conditions: Co-Zr0.1-B-O catalyst 40 mg, solvent 2 mL, 4 MPa CO2, 4 MPa 

H2, 180 oC, 12 h. 
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Figure S9. Time course of the reaction. Conditions: Co-Zr0.1-B-O catalyst 40 mg, cyclohexane 2 mL, 4 MPa CO2, 4 MPa H2, 180 oC. 
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Figure S10. Results of the recycling test of the catalyst. Conditions: Co-Zr0.1-B-O catalyst 40 mg, cyclohexane 2 mL, 4 MPa CO2, 4 MPa 

H2, 180 oC, 12 h. 
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Figure S11. The HAADF-STEM images and EDS mapping of B, O, Co and Zr on the catalyst after five cycles.



 13 / 22

Figure S12. XPS characterization of the Co-Zr0.1-B-O catalyst after adsorption of H2 or CO2 at elevated temperature: (A) Co 2p, (B) Zr 

3d, (C) B 1s, (D) O1s. 

I: The catalyst was pretreated in a reactor with 4 MPa H2 at 180 oC for 2 h and then cooled to room temperature; 

II: After step I the H2 was released and replaced by 4 MPa CO2, after the reactor was kept at 180 oC for 1 h it was cooled to room 

temperature. 

After the adsorption, the catalyst samples in the reactors were quickly transferred into the chamber of the XPS spectrometer. 
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Figure S13. In situ FTIR spectra obtained during CO2 adsorption on the Co-Zr0.1-B-O catalyst. The catalyst was pretreated by H2 at 180 
oC for 2 h before the CO2 adsorption. The black line is the background spectrum scanned before CO2 was introduced. 
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Figure S14. In situ FTIR spectra during reaction of CO2 and H2 over the Co-Zr0.1-B-O catalyst. At 20 oC, CO2 was firstly added, then CO2 

and H2 were introduced together. The temperature was elevated from 20 to 180 oC at the rate of 5 oC /min and kept at 180 oC for 30 

min. The black line is the background spectrum scanned at 20 oC before CO2 was introduced.
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Figure S15. In situ FTIR spectra of the Co-Zr0.1-B-O catalyst during heating at a rate of 10 oC/min in N2 flow. The background 

spectrum was scanned at 30 oC.
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Figure S16. XPS characterization of the Co-Zr0.1-B-O catalyst after CO2 methanation. Conditions: Co-Zr0.1-B-O catalyst 40 mg, 

cyclohexane 2 mL, 4 MPa CO2, 4 MPa H2, 180 oC, 12 h. The sample was obtained after releasing the gases of the cooled reactor. 



 18 / 22

Table S1. The representative results of CO2 methanation at low temperature (≤250 oC).

The activities of some results are converted to mmolCO2·gcat
-1h-1 based on the data given in the literatures, and the detailed 

procedures are given below.  

n/a represents “not available” because of lacking some key parameter for calculation.

Ru(NC)/CeO2 (Ref. 3): 

7.41×10−3 s-1  3600 s/h÷101.1 g/molRu  0.0256 gRu/gcat  1000 mmol/mol = 6.8 mmolCO2·gcat
-1h-1 

Rh(3 wt.%)/TiO2 (Ref. 4): 

0.14310-2 molCH4 molRh-1 s-1  3600 s/h÷102.9 g/molRh  0.03 gRh/gcat  1000 mmol/mol = 1.5 mmolCO2·gcat
-1h-1

Ru/[BMIM]BF4/SiO2 (Ref. 5): 

   2400 h-1 (GHSV)  l Lcat÷22.4 L/mol  15 (CO2)%  70 (conv.)%÷(1 Lcat  2200 gcat/L)  1000 mmol/mol = 5.1 mmolCO2·gcat
-1h-1

   (The catalyst density was not available and was supposed to be the density of SiO2 support because of the low Ru loading.)

Ru/TiO2 (B) (Ref. 7):

1.510-2 s-1  1.55 m2gcat.
-1 0.1739 1020 ÷ (6.021023 atom/mol)  1000 mmol/mol  3600 s/h = 2.4 mmolCO2·gcat

-1h-1

RuNPs in [omim][NTf2] (Ref. 8):

72 molCH4 molRu
-1 ÷ 101.1 g/mo1Ru

 ÷ 24h  1000 mmol/mol = 29.7 mmolCO2·gcat
-1h-1

Rh-Pd/γ-Al2O3 (Ref. 9):

0.309 umol gcat
−1 s−1  3600 s/h÷1000 umol/mmol = 1.1 mmolCO2·gcat

-1h-1

   (The reaction rate with the unit of umol gcat
−1 s−1 was obtained directly from Table 1 of the Ref. 9)

3Ru-30Ni/Ce0.9Zr0.1O2 (Ref. 10):

   2400 mL g-1h-1÷22.4 mL/mmol  20%CO2  98.2%conv. = 21.0 mmolCO2·gcat
-1h-1

Ru/30%CeO2/Al2O3 (Ref. 11):

   6.2 mL min-1 gcat
-1 ÷22.4 mL/mmol  60 min/h = 16.6 mmolCO2·gcat

-1h-1

Entry Catalyst T (oC) Best data in the Reference Normalized activity
( mmolCO2·gcat

-1h-1) CH4% Ref.

1 Ru(NC)/CeO2 190 7.41×10−3 s−1 6.8 >98 [3]

2 Rh(3 wt.%)/TiO2 150 0.14310-2 molCH4 molRh
-1 s-1 1.5 100 [4]

3 Ru/[BMIM]BF4/SiO2 250 70% (CO2 conversion) 5.1 100 [5]

4 RuNPs in [C8mim][NfO] 150 3.25 h-1 (84% yield) n/a 100 [6]

5 Ru/TiO2 (B) 160 1.510-2 S-1 2.4 100 [7]

6 RuNPs in [omim][NTf2] 150 72 (TON), 69% (yield) 29.7 100 [8]

7 Rh-Pd/γ-Al2O3 200
0.309 umol gcat

−1 s−1 
(0.31810-2 molCH4 molRh

−1 s−1)
1.1 100 [9]

8 3Ru-30Ni/Ce0.9Zr0.1O2 230 98.2% (CO2 conversion) 21.0 100 [10]

9 Ru/30%CeO2/Al2O3 250 6.2 mL min-1 gcat
-1 16.6 ≈100 [11]

10 Rh/γ-Al2O3:Ni/AC 125 9.5 umol g−1 n/a 100 [12]

11 Co-Zr0.1-B-O 180 10.7 97.8 This work
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Table S2. Impact of Zr content on the structure and performance of the catalysts.

a The data were from XPS analysis, indicating the atomic percentage in total surface atoms.
b The unit of the activity is mmolCO2 gcat

-1
 h-1, which was obtained at the same condition to that in Figure 1.

 

Surface composition (atom%)a

Catalyst
Co Zr B O

SBET 

(m2 g−1)

Catalytic

activityb

Co-B-O 7.7 - 3.6 88.7 18.8 0.9

Co-Zr0.05-B-O 30.4 1.6 14.7 53.3 32.0 8.2

Co-Zr0.1-B-O 34.7 5.1 18.9 41.3 92.4 10.7

Co-Zr0.3-B-O 16.5 6.6 13.2 63.7 20.0 5.8
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Table S3. The oxygen states of different catalysts determined by XPS characterization.

O 1s %

Catalyst

Lattice O Surface O B-O

Co-B-O 6.2 51.3 42.5

Co-Zr0.05-B-O 45.5 41.7 12.8

Co-Zr0.1-B-O 36.2 47.7 16.1

Co-Zr0.3-B-O 35.0 40.5 24.5

Co-Zr0.1-B-O-5r 33.9 51.6 14.5

The data of oxygen states were obtained from the XPS characterization of different catalysts.
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Table S4. Result of the CO hydrogenation over the Co-Zr0.1-B-O catalyst.

Product selectivity (%)

methane ethane propane CO2

CO 
conversion 

(%)

Activity
(mmolCO gcat

-1
 h-1)

26.2 4.3 4.4 65.1 0.7 0.4

Conditions: catalyst 40 mg, cyclohexane 2 mL, 4 MPa CO, 4 MPa H2, 180 oC, 12 h.
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