Supporting Information

Solvate Sponge Crystals of (DMF)₃NaClO₄: reversible pressure/temperature controlled juicing in a melt/press-castable sodium-ion conductor.

Prabhat Prakash,^{a,c} Ardhra Shylendran, ^a Birane Fall,^b Michael J. Zdilla,^b* Stephanie L.

Wunder,^{b*} Arun Venkatnathan.^{a*}

^a Department of Chemistry and Centre for Energy Science, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune: 411008, India.

^b Department of Chemistry, Temple University, 1901 N. 13th St., Philadelphia, PA 19086, USA.

^c Materials Science and Engineering, Indian Institute of Technology Gandhinagar, Gujarat 382355, India.

Email:

- * Arun Venkatnathan: <u>arun@iiserpune.ac.in</u>
- * Michael J. Zdilla: <u>mzdilla@temple.edu</u>
- * Stephanie L. Wunder: <u>slwunder@temple.edu</u>

Table of Contents

Standard Operating Procedure (SOP) for potentially explosive hot mixtures S3
Chemical and physical properties of 3:1 vs. 2:1 stoichiometric cocrystals of DMF-NaClO ₄
Powder XRD a pressed pellet of DMF-NaClO ₄
Force-field parameters
Details of topology file
Mass density and non-bonded interaction energy for model P during simulated heating
Snapshots from simulations
Cluster analysis for (DMF) ₃ NaClO ₄ simulated as model <i>P</i> : Histograms at constant T
Radial Distribution Functions calculated from simulations on model <i>P</i> S11
Differential Scanning Calorimetry of (DMF) ₂ NaClO ₄
Effect of high-pressure anisotropicity on the average size of various clusters in cocrystals
Effect of high-pressure anisotropicity on the total number of various clusters in cocrystals
X-ray Crystallographic Tables for (DMF) ₂ NaClO ₄
References

Standard Operating Procedure (SOP) for potentially explosive hot mixtures.

Caution: Perchlorate-containing materials are hazardous and can cause explosions, especially at high temperature, and when mixed with organic fuels. While no explosions occurred during our work, the use of explosion proof masks, Kevlar gloves, and an explosion-proof blast shield within a fume hood are recommended when heating perchlorate-organic mixtures. In this work, sodium perchlorate was weighed and combined with liquid DMF using standard PPE (gloves, lab coat, safety glasses), and combined in a Teflon-capped heavy-wall pressure flask. The flask was placed into a temperature-controlled oil bath in a hood, and heated with the hood sash down. We also use and recommend the employment of an additional plexiglass blast shield between the reaction and the hood sash. Once the reaction was complete, the heat was turned off by reaching around the plexiglass shield wearing a pair of Kevlar gloves to turn off the heat. Alternatively, the hot plate may be unplugged from the wall to cease heating. Once the mixture was cooled to room temperature, it was removed from the hood and handled once again with standard PPE.

Chemical and physical properties of 3:1 vs. 2:1 stoichiometric cocrystals of DMF-NaClO₄

Stoichiometry	3:1 ^a	2:1 ^b
Crystal System	Hexagonal	Monoclinic
Space Group	P-62c	P2/c
NaNa distance in primary channel (in Å)	3.23	3.40
NaNa distance in secondary channel (in Å)	12.00	8.54
NaO(DMF) distances (in Å)	2.40	2.34, 2.44
NaClO ₄ distances (in Å)	7.11 (NaCl)	2.36, 2.51 (NaO)
T_m (from DSC) (in 0 C)	55	70
T_d (from TGA) (in 0 C)	50	40

Table S1. Comparison of structural features and melting/decomposition in stoichiometric cocrystals of DMF and NaClO₄.

a. All data is reproduced from Zdilla and coworkers¹.

b. All data, except T_m and T_d , is reproduced from Rao and coworkers².

c. DSC data for 2:1 is provided in the Figure S7.

Powder XRD a pressed pellet of DMF-NaClO₄

Figure S1. PXRD of (DMF)₃NaClO₄ and (DMF)₂NaClO₄ samples. Black: Crystalline (DMF)₃NaClO₄ before pressing. Red: Following pressing, a sample taken from near the center of the pressed pellet in an EIS cell shows presence of (DMF)₃NaClO₄. Blue: experimentally isolated sample of (DMF)₂NaClO₄ contaminated by (DMF)₃NaClO₄. Green: Sample taken from near the edge (green) of a pressed pellet in an EIS cell shows appearance of (DMF)₂NaClO₄.

Figure S2. PXRD patterns of post-melted samples of $(DMF)_3NaClO_4$. At room temperature (top), formation of 2:1 (DMF)_2NaClO_4 phase is observed, which partially reverts to the 3:1 phase over the course of 20 h. At 0 °C, the sample fully reverts to the 3:1 phase over 20 h. At -40 °C, the structure immediately reverts to the 3:1 phase and remains so.

Force-field parameters

Bonded parameters: From OPLS-AA force field³

vdW parameters in the form of Lennard Jones potential: OPLS-AA force field

Electrostatic charges for Coulombic potential-

All gas-phase calculations were performed using Gaussian 16 Rev A.03 software code⁴.

Charge on Na⁺ ion: Calculated from optimized structure of $[Na(DMF)_6]^+$ in gas phase using MP2//aug-cc-PVDZ method. $q_{Na}^+ = + 0.91525 e^-$

Charge on Cl and O atoms in ClO4⁻ anion: Calculated from optimized structure of ClO4⁻ in gas phase using MP2//aug-cc-PVDZ, and scaled by q_{Na}^+ .

 $q_{O(ClO4)} = -0.4927 \text{ e}^{-}, q_{Cl(ClO4)} = +1.05555 \text{ e}^{-}$

Charge on atoms in DMF molecule: adapted from Vasudevan et al.⁵

Details of the topology file used for simulations are provided below.

Details of topology file

```
; All charges from CHELPG
; Na charges from NA(DMF)<sub>6</sub> structure MP2/aug-cc-PVDZ
; CLO charges from gas phase scaled from NA(DMF)6 str opt MP2//aug-cc-PVDZ
; DMF charges from J. Mol. Lig 206 (2015) 338-342
#include "~/oplsaa.ff/forcefield.itp"
[moleculetype]
; Name
           nrexcl
NA
         1
[atoms]
; nr
       type resnr residue atom cgnr charge
                                            mass
  1 opls 407
               1 NA NA
                                 0.91525 22.98977
                            1
[moleculetype]
; Name
           nrexcl
CLO
         3
[atoms]
; nr
      type resnr residue atom cgnr charge
                                            mass
  1 opls 998
               1 CLO CL
                            2
                                 1.05555 35.453
  2 opls 999
               1 CLO
                       0
                            2
                                -0.4927 15.9994
  3 opls 999
               1 CLO
                       0
                            2
                                -0.4927 15.9994
                                -0.4927 15.9994
  4 opls 999
               1 CLO
                       0
                            2
  5 opls 999
               1 CLO
                       0
                            2
                                -0.4927 15.9994
[moleculetype]
; Name
           nrexcl
DMF
          3
[atoms]
      type resnr residue atom cgnr charge
; nr
                                            mass
   1 opls 236 1
                 DMF 01 1 -0.68000 15.9994
   2 opls 239 1
                  DMF N1 1 0.040000 14.0067
                 DMF C1 1 0.500000 12.011
   3 opls 235 1
   4 opls 140 1
                 DMF H1 1 0.000000 1.008
   5 opls 243 1
                 DMF C2 2 -0.11000 12.011
   6 opls 140 1
                 DMF H2 2 0.060000 1.008
   7 opls 140 1
                  DMF H3 2 0.060000 1.008
   8 opls 140 1
                  DMF H4 2 0.060000 1.008
   9 opls 243 1 DMF C3 3 -0.11000 12.011
   10 opls_140 1 DMF H5 3 0.060000
                                         1.008
   11 opls_140 1
                  DMF H6 3 0.060000
                                         1.008
   12 opls_140 1
                  DMF H7 3 0.060000
                                         1.008
```

Mass density and non-bonded interaction energy for model P during simulated heating

Figure S3. (a) Mass density and (b) non-bonded interaction energy E_{nb} of (DMF)₃NaClO₄ in model P during simulated heating from 100 K to 500 K with a heating rate of 20 K/ns. The highlighted region shows a rapid drop of density in **a** and extreme change in ion-solvent vs. interionic interactions in **b** during the melting of cocrystals.

Snapshots from simulations

Figure S4. Snapshots of (DMF)₃NaClO₄ simulated as model P. Atoms: Yellow- Na⁺, Green-O(DMF), Red- O(ClO₄⁻); Bonds: Blue- Na...Na, Green- Na...O(DMF), Red- Na...O(ClO₄⁻); Cut-off for dynamic bonds: Na...Na \leq 3.5 Å, Na...O(DMF) \leq 3.0 Å, Na...O(ClO₄⁻) \leq 2.2 Å. All the snapshots of the trajectory are provided in the Supporting Movie 1.

Figure S5. Cluster histograms for (DMF)₃NaClO₄ simulated at constant temperature under NpT ensemble conditions (a) Na...Na clusters (≤ 3.5 Å), (b) Na...ClO₄⁻ clusters (≤ 2.2 Å), (c) Na...DMF clusters (≤ 3.0 Å); (i) 100 K, (ii) 273 K, (iii) 298 K and (iv) 325 K.

Y-axis: number of clusters, X-axis: size of clusters.

(a)

Figure S6. RDF of (a) Na---O(DMF) and (b) Na---O(ClO₄⁻) from NPT simulations on model P at various temperatures.

Differential Scanning Calorimetry of (DMF)₂NaClO₄

Figure S7. DSC of $(DMF)_2NaClO_4$ at scan rate of $10^{\,0}C/min$. Data for $(DMF)_3NaClO_4$ is reused for comparison from Zdilla and coworkers¹ © 2016 Wiley-VCH Verlag GmbH &Co. KGaA,Weinheim.

Effect of high-pressure anisotropicity on the average size of various clusters in cocrystals

Figure S8. Average size of (a) Na---O(DMF) (≤ 3.0 Å), (b) Na---O(ClO₄⁻) (≤ 2.2 Å), and (c) Na---Na (≤ 3.5 Å), for a 20 ns trajectory for isotropic 1 bar equilibration compared with 100 bar anisotropic pressure from xy and z directions, at T = 298 K.

Effect of high-pressure anisotropicity on the total number of various clusters in cocrystals

Figure S9. Number of Na---O(DMF) (≤ 3.0 Å), Na---O(ClO₄⁻) (≤ 2.2 Å), and Na---Na (≤ 3.5 Å), for a 20 ns trajectory simulated under *NpT* conditions as (**a**) P = 1 bar isotropic, (**b**) P_x = P_y = 100 bar, P_z = 1 bar, and (**c**) P_x = P_y = 1 bar, P_z = 100 bar, at T = 298 K.

Empirical formula	$C_6H_{14}N_2O_6NaCl$
Formula weight	268.63
Temperature/K	99.98
Crystal system	monoclinic
Space group	P2/n
a/Å	9.1493(14)
b/Å	10.1833(15)
c/Å	13.220(2)
α/°	90
β/°	108.244(3)
$\gamma/^{\circ}$	90
Volume/Å ³	1169.8(3)
Z	4
$\rho_{calc}g/cm^3$	1.525
μ/mm^{-1}	0.378
F(000)	560.0
Crystal size/mm ³	$0.152\times0.121\times0.076$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	4 to 55.62
Index ranges	$-5 \le h \le 11, -10 \le k \le 13, -17 \le l \le 16$
Reflections collected	5501
Independent reflections	2335 [$R_{int} = 0.0157, R_{sigma} = 0.0210$]
Data/restraints/parameters	2335/0/159
Goodness-of-fit on F^2	1.059
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0320, wR_2 = 0.0816$
Final R indexes [all data]	$R_1 = 0.0414, wR_2 = 0.0869$
Largest diff. peak/hole / e Å ⁻³	0.50/-0.30

X-ray Crystallographic Tables for (DMF)₂NaClO₄ Table S2 Crystal data and structure refinement for mo_3183_0m.

Atom	Length/Å	Atom	Atom	Length/Å
O1C	1.4391(14)	Na2	O1 ²	2.3390(13)
O2C	1.4227(17)	Na2	O2	2.4416(13)
O3C	1.4315(16)	Na2	$O2^2$	2.4416(13)
O4C	1.4375(12)	Na2	O4C ²	2.5094(15)
Na2 ¹	3.4822(5)	Na2	O4C	2.5094(15)
Na2	3.4822(5)	01	C1	1.239(2)
O1 ¹	2.3782(12)	O2	C2	1.236(2)
01	2.3782(12)	N1	C1	1.323(3)
$O1C^1$	2.3572(16)	N1	C1T	1.460(2)
01C	2.3572(16)	N1	C2T	1.458(2)
$O2^1$	2.3398(12)	N2	C2	1.322(2)
O2	2.3398(12)	N2	C3T	1.460(3)
01	2.3390(13)	N2	C4T	1.459(2)
	Atom O1C O2C O3C O4C Na2 ¹ Na2 O1 ¹ O1C ¹ O1C ¹ O1C O2 ¹ O2 O1	AtomLength/ÅO1C1.4391(14)O2C1.4227(17)O3C1.4315(16)O4C1.4375(12)Na2 ¹ 3.4822(5)Na23.4822(5)O1 ¹ 2.3782(12)O1C ¹ 2.3782(12)O1C ¹ 2.3572(16)O2 ¹ 2.3398(12)O22.3398(12)O12.3390(13)	Atom Length/Å Atom O1C 1.4391(14) Na2 O2C 1.4227(17) Na2 O3C 1.4315(16) Na2 O4C 1.4375(12) Na2 O4C 1.4375(12) Na2 Na2 ¹ 3.4822(5) Na2 Na2 3.4822(5) O1 O1 ¹ 2.3782(12) N2 O1C ¹ 2.3572(16) N1 O1C ¹ 2.3398(12) N2 O2 ¹ 2.3398(12) N2 O1 2.3390(13) N2	Atom Length/Å Atom Atom O1C 1.4391(14) Na2 O1 ² O2C 1.4227(17) Na2 O2 O3C 1.4315(16) Na2 O2 ² O4C 1.4375(12) Na2 O4C ² Na2 ¹ 3.4822(5) Na2 O4C Na2 3.4822(5) O1 C1 O1 ¹ 2.3782(12) O2 C2 O1 ¹ 2.3782(12) N1 C1 O1C ¹ 2.3572(16) N1 C1 O1C ¹ 2.3398(12) N2 C2 O2 ¹ 2.3398(12) N2 C3 O1 2.3390(13) N2 C4T

Table S3 Bond Lengths for mo_3183_0m.

¹1-X,1-Y,-Z; ²3/2-X,+Y,1/2-Z

Table S4 Bond Angles for mo_3183_0m.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
O2C	Cl1	01C	109.20(12)	01	Na2	O1 ²	164.50(7)
O2C	Cl1	O3C	109.67(10)	01	Na2	$O2^2$	111.13(5)
O2C	Cl1	O4C	110.26(10)	O1 ²	Na2	$O2^2$	80.84(4)
O3C	Cl1	01C	108.90(10)	O1 ²	Na2	O2	111.13(5)
O3C	Cl1	O4C	110.20(9)	01	Na2	O2	80.84(4)
O4C	Cl1	01C	108.59(8)	01	Na2	$O4C^2$	81.65(5)
Na2 ¹	Na1	Na2	180.00(3)	O1 ²	Na2	$O4C^2$	87.06(5)
O 1	Na1	Na2 ¹	138.01(3)	O1 ²	Na2	O4C	81.65(5)
$O1^1$	Na1	Na2	138.01(3)	01	Na2	O4C	87.06(5)
01	Na1	Na2	41.99(3)	O2	Na2	Na1 ²	112.46(4)
O 1 ¹	Na1	Na2 ¹	41.99(3)	$O2^2$	Na2	Na1	112.46(4)

$O1^1$	Na1	01	180.0	$O2^2$	Na2	Na1 ²	42.12(3)
$O1C^1$	Na1	Na2	107.99(4)	O2	Na2	Na1	42.12(3)
01C	Na1	Na2	72.01(4)	O2	Na2	$O2^2$	83.43(6)
01C	Na1	Na2 ¹	107.99(4)	$O2^2$	Na2	O4C ²	97.95(4)
$O1C^1$	Na1	Na2 ¹	72.01(4)	O2	Na2	O4C	97.95(4)
$O1C^1$	Na1	O1 ¹	88.58(5)	$O2^2$	Na2	O4C	161.68(5)
$O1C^1$	Na1	O1	91.42(5)	O2	Na2	O4C ²	161.68(5)
01C	Na1	O1	88.58(5)	$O4C^2$	Na2	Na1	122.70(3)
01C	Na1	O1 ¹	91.42(5)	O4C	Na2	Na1	79.09(3)
01C	Na1	O1C ¹	180.00(8)	$O4C^2$	Na2	Na1 ²	79.09(3)
$O2^1$	Na1	Na2	135.58(3)	O4C	Na2	Na1 ²	122.70(3)
O2	Na1	Na2 ¹	135.58(3)	$O4C^2$	Na2	O4C	86.47(8)
$O2^1$	Na1	Na2 ¹	44.42(3)	Na2	01	Na1	95.15(5)
O2	Na1	Na2	44.42(3)	C1	01	Na1	120.71(10)
O2	Na1	01	82.17(4)	C1	01	Na2	123.41(11)
$O2^1$	Na1	01	97.83(4)	Cl1	01C	Na1	137.31(11)
O2	Na1	O1 ¹	97.83(4)	Na1	O2	Na2	93.46(4)
$O2^1$	Na1	O1 ¹	82.17(4)	C2	O2	Na1	126.38(11)
$O2^1$	Na1	O1C ¹	86.44(6)	C2	O2	Na2	133.15(10)
$O2^1$	Na1	01C	93.56(6)	Cl1	O4C	Na2	127.37(8)
O2	Na1	O1C ¹	93.56(6)	C1	N1	C1T	121.13(16)
O2	Na1	01C	86.44(6)	C1	N1	C2T	121.70(15)
O2	Na1	$O2^1$	180.0	C2T	N1	C1T	117.15(17)
Na1 ²	Na2	Na1	152.12(3)	C2	N2	C3T	121.52(15)
O1 ²	Na2	Na1	142.94(3)	C2	N2	C4T	121.4(2)
01	Na2	Na1 ²	142.94(3)	C4T	N2	C3T	117.02(19)
O1 ²	Na2	Na1 ²	42.86(3)	01	C1	N1	124.87(16)
01	Na2	Na1	42.86(3)	O2	C2	N2	124.83(17)

¹1-X,1-Y,-Z; ²3/2-X,+Y,1/2-Z

Experimental

Single crystals of $C_6H_{14}N_2O_6NaCl$ were mounted on a Bruker APEX-II CCD diffractometer. The crystal was kept at 99.98 K during data collection. The structure was solved with the ShelXS⁷ structure solution program using Direct Methods and refined with the ShelXL⁸ refinement package using Least Squares minimization using Olex2⁶as a GUI.

Crystal structure determination of (DMF)₂NaClO₄

Crystal Data for C₆H₁₄N₂O₆NaCl (M =268.63 g/mol): monoclinic, space group P2/n (no. 13), a = 9.1493(14) Å, b = 10.1833(15) Å, c = 13.220(2) Å, β = 108.244(3)°, V = 1169.8(3) Å³, Z = 4, T = 99.98 K, μ (MoK α) = 0.378 mm⁻¹, *Dcalc* = 1.525 g/cm³, 5501 reflections measured ($4^{\circ} \le 2\Theta \le 55.62^{\circ}$), 2335 unique ($R_{int} = 0.0157$, $R_{sigma} = 0.0210$) which were used in all calculations. The final R_1 was 0.0320 (I > 2 σ (I)) and wR_2 was 0.0869 (all data).

Refinement model description

Number of restraints - 0, number of constraints - unknown.

```
Details:
1. Fixed Uiso
At 1.5 times of:
All C(H,H,H) groups
2.a Idealised Me refined as rotating group:
C1T(H1TA,H1TB,H1TC), C2T(H2TA,H2TB,H2TC), C3T(H3TA,H3TB,H3TC), C4T(H4TA,H4TB,H4TC)
```

References

- 1 P. R. Chinnam, B. Fall, D. A. Dikin, A. Jalil, C. R. Hamilton, S. L. Wunder and M. J. Zdilla, *Angew. Chemie Int. Ed.*, 2016, **55**, 15254–15257.
- 2 C. Pulla Rao, A. Muralikrishna Rao and C. N. R. Rao, *Inorg. Chem.*, 1984, **23**, 2080–2085.
- 3 W. L. Jorgensen, D. S. Maxwell and J. Tirado-Rives, *J. Am. Chem. Soc.*, 1996, **118**, 11225–11236.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, G. A. Petersson, H. Nakatsuji, X. Li, M. Caricato, A. V Marenich, J. Bloino, B. G. Janesko, R. Gomperts, B. Mennucci, H. P. Hratchian, J. V Ortiz, A. F. Izmaylov, J. L. Sonnenberg, Williams, F. Ding, F. Lipparini, F. Egidi, J. Goings, B. Peng, A. Petrone, T. Henderson, D. Ranasinghe, V. G. Zakrzewski, J. Gao, N. Rega, G. Zheng, W. Liang, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, K. Throssell, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, T. A. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, J. M. Millam, M. Klene, C. Adamo, R. Cammi, J. W. Ochterski, R. L. Martin, K. Morokuma, O. Farkas, J. B. Foresman and D. J. Fox, 2016, Gaussian 16 Rev. A.03.
- 5 V. Vasudevan and S. H. Mushrif, J. Mol. Liq., 2015, 206, 338–342.
- 6 O.V. Dolomanov, L.J. Bourhis, R.J, Gildea, J.A.K Howard, H. Puschmann, J. Appl. Cryst. 2009, 42, 339-341.
- 7 G. M. Sheldrick, Acta Cryst., 2008 A64, 112-122.
- 8 G. M. Sheldrick, *Acta Cryst.*, 2015 C71, 3-8.