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SI Section S.1 – Surrogate Model Design 

 All four components of the surrogate model are derived from real-world experimental data. 

The global failure rate was estimated from experiments reported in prior work.[1] Shown in Figure 

S1, 130 experiments of the same reaction conditions were conducted in series. Among those tests, 

2 experiments resulted in no detected emission. Subsequently, a global failure rate of 1.5% was 

assigned to every simulated experiment. The regions of the input space which produce non-

emitting samples were estimated by training a Gaussian-naïve Bayes classifier on 85% of the full 

experimental data set for either emitting (1) or non-emitting (0) samples, where the remaining 15% 

was used for model validation. The ground truth model was built through three GPRs trained on 

85% of the full experimental data set, with 15% for validation, for each of the three output 

variables. The GPRs were trained with a zero-prior mean estimate and a squared exponential kernel  

𝜮𝟎ሺ𝒙, 𝒙′ሻ = 𝝈𝟎𝟐 𝒆𝒙𝒑 ቈ− ∥ 𝒙 − 𝒙′ ∥𝟐𝟐𝟐𝒍𝟐 ቉ 
 
The prior uncertainty  𝜎଴ and length scale 𝑙 hyperparameters were optimized through five-fold 

cross-validation. Given experimental training data, the surrogate model predictions for the 

responses are then given by the posterior predictive distribution 𝑓ሺ𝑥ሻ = Σ଴ሺ𝑥,𝑋ሻሾΣ଴ሺ𝑋,𝑋ሻ +  σ୛ଶ 𝐼ሿିଵy 

where  𝜎ௐ is the noise level, y is the vector of experimental data responses, X is the matrix of 

experimental data inputs, and Σ଴ሺ𝑋,𝑋ሻ is the covariance matrix for every pair of experimental data 

inputs in X, and Σ଴ሺ𝑥,𝑋ሻ is the vector of covariances between the test in put x and the experimental 

data inputs in X. Sampling noise for each of these parameters was derived from the estimated 

variance as predicted by the GPRs used in the ground truth models. A constant value was used for 

each, as statistical analysis indicates homoscedastic noise. 
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Figure S1. Sampling Stability Analysis. Output experimental data – peak emission energy (EP), emission 
linewidth (EFWHM), and photoluminescence quantum yield (𝚽) – collected across 130 replicates of the same 
experimental conditions on the real-world microfluidic anion exchange reaction platform, reported in Epps 
et al.[1] 
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SI Section S.2 – Validation of the Surrogate Model-Based Optimization  

 The same experiment selection algorithm applied in our prior study[1] was integrated into 

the simulated reaction environment. The resulting optimization predictions were compared to the 

corresponding real-world experimental data. A sub-set of optimization runs was evaluated in this 

manner (Figure S2), and the simulation environment produced reasonably high predictability with 

69% of experimentally measured best objective function values falling inside the predicted inter-

quartile range. 

 

Figure S2. Validation of the Surrogate Model-Based Optimization Strategy. Outputs of real-world 
collected experimental data reported in Epps et al.[1], compared to the median best simulated objective 
function value predictions (Z’b) using the corresponding decision-making algorithms, where the shaded 
regions correspond to the 25th and 75th percentiles. Experimental results were compared for peak emission 
energies of 2.0 eV, 2.1 eV, 2.2 eV, and 2.3 eV with upper confidence bound (UCB) and expected 
improvement (EI) decision policies. 
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SI Section S.3 – Gaussian Process Regression Training Parameters 

All GP-based simulated campaigns began with three independent GP prior beliefs, for each 

objective and each using an independent, isotropic, squared exponential kernel:  

𝚺𝟎ሺ𝑿,𝑿ᇱሻ = 𝝈𝟎𝟐 𝐞𝐱𝐩 ቈ− ∥ 𝑿 − 𝑿ᇱ ∥𝟐𝟐𝟐𝒍𝟐 ቉ 
where 𝝈𝟎 = 𝟎.𝟏 and 𝒍 = 𝟎.𝟐𝟓. Upon receiving noisy data, the hyper-parameters were allowed 

to be optimized using by maximum likelihood methods, and the hyper-parameters assigned to the 

beliefs of each of the three different objectives were allowed be optimized to different values. 

That is, the three GP beliefs did not share any hyper-parameters information between them. The 

GP models were trained in this way for 50 consecutive experiments with the surrogate model. 

This process was repeated 100 times for each experimental campaign. 

  



S-6 
 

SI Section S.4 – Ensemble Neural Network Architecture 

 The ensemble neural network models were constructed using equally weighted cascade- or 

feed- forward ANNs. Data sets were randomly subsampled for each model in the ensemble using 

a training-testing-validation split of 0.7-0.15-0.15. ANNs were trained using the Levenberg-

Marquardt backpropagation function with a maximum epoch number of 1000, an initial µ of 0.001, 

a µ decrease factor of 0.1, a µ  increase factor of 10, a maximum µ of 1x1010, a minimum 

performance gradient of 1x10-9, a maximum number of validation failures of 100, a maximum 

training time of 2 s, a hyperbolic tangent sigmoid transfer function, and with memory reduction 

by a factor of 2.  ENNs were fully reconstructed after each experiment. Model uncertainty was 

determined through the variance of predictions across the ensemble.  

Subsampling of the available experimental data has the potential to normalize the influence 

of individual data points, resulting in either more robust or less precise models. However, shown 

in Figure S3, data subsampling within the ensemble neural network demonstrated no detectable 

impact on the efficiency of the AI-guided optimization algorithm. This observation is likely due 

to sparse data availability in a five-dimensional space. The limited available information results in 

similar model predictions regardless of subsampling rate. 
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Figure S3. Data Subsampling. (A) Best median objective function (Z’b) for objective function 
weights of [0.8,0.1,0.1] with an expected improvement policy across 25 experiments  and (B) after 
5, 10, and 25 experiments for data subsampling rates for each model in the 200-model ensemble 
ranging from 30% to 99%. A training-testing split of 4.667:1 was maintained for all subsampled 
data sets.  
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SI Section S.5 – Neural Network Structure Tuning 

 While the highest performing ensemble neural network model featured individual neural 

networks of randomized structure, ensembles containing constant architecture neural networks 

were also systematically studied to provide further insights into the predictive capability of various 

systems. Shown in Figure S4, the feed forward neural network ensemble significantly 

underperformed relative to cascade forward for all tested structures. Furthermore, the feed forward 

structure ensemble demonstrated decreasing formulation optimization performance with 

increasing structural complexity, suggesting that the optimal feedforward system is unlikely to 

match the performance of cascade forward ensembles. The cascade forward structures showed 

little distinction in performance once a sufficient level of complexity was attained. 

 

Figure S4. Ensemble Neural Network Structure Analysis. Best median objective function value after 25 
experiments (Z’25,b) for ensemble neural networks of constant structure with an expected improvement 
policy as a function of the number of layers (NLayers) and nodes (NNodes) for (A) a 200 feed forward, (B) a 
200 cascade forward, and (C) a 50 cascade forward ensemble neural network model. Objective function 
weights of [0.85,0.05,0.1] were used. 
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SI Section S.6 – UCB Parameter Tuning 

 The upper confidence bound (UCB) decision policy on an ensemble model operates with 

the following equation, 

𝑋௡ାଵ௎஼஻ = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑓௡(𝑋ሻ + 𝜀𝜎௡(𝑋ሻ) 

where 𝑋௡ାଵ௎஼஻is the next set of experimental conditions to text, 𝑓௡(𝑋) and 𝜎௡(𝑋) are the mean 

estimate and variance for reaction conditions X at time n, and ε is a tunable parameter 

representative of the weight given to exploration over exploitation of the model. Systematic 

analysis of the UCB tunable parameter through the simulation environment indicates that the 

optimal value for this system is weighted more heavily towards exploration over the value assigned 

in our prior reported algorithm. As shown in Figure S5, UCB with ε value of 0.8 performed the 

best in terms of the learning and optimization rates of the metal halide perovskite quantum dot 

formulations. 

 

Figure S5. Tuning of UCB Exploration Parameter. (A) Best median objective function (Z’b) for objective 
function weights of [0.8,0.1,0.1] for varied UCB tuning parameter (ε) across 25 experiments. (B) Best 
median objective function value after 25 experiments (Z’25,b) for nine different values of ε, where error bars 
correspond to the 25th and 75th percentiles. 
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SI Section S.7 – Evolutionary Algorithm Tuning 

 Two evolutionary algorithms were evaluated in the simulated environment: Covariance 

Matrix Adaptation Evolution Strategy (CMA-ES) and Non-dominated Sorting Genetic Algorithm 

II (NSGA-II). Both of which feature many tunable parameters that may be adjusted for a given 

optimization problem. The primary variable optimized in this work is the generation population 

size (NGeneration). As presented in Figure S6, fine tuning of NGeneration revealed optimal population 

sizes of 4 and 6 for CMA-ES and NSGA-II respectively. 

 

Figure S6. Tuning of Evolutionary Algorithms. (A) Best median objective function value (Z’b) after 5, 10, 
and 25 experiments for eleven generation sizes (NGeneration) for Covariance Matrix Adaptation Evolution 
Strategy (CMA-ES) and (B) Non-dominated Sorting Genetic Algorithm II (NSGA-II), where the shaded 
regions correspond to the 25th and 75th percentiles. 
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