Supporting Information

for

Reversible Pt^{II}-CH₃ deuteration without methane loss: metal-ligand cooperation vs ligand-assisted Pt^{II}-protonation

Shrinwantu Pal,^{*,1} Kyoko Nozaki,^{,1} Andrei N. Vedernikov² and Jennifer A. Love^{3,†*}

¹Department of Chemistry and Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 Japan

²Department of Chemistry and Biochemistry, The University of Maryland, College Park, Maryland 20742 USA

³Department of Chemistry, The University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada ⁺*Current Address*: Department of Chemistry, The University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4 Canada.

Contents:

- 1. General Procedures
- 2. Synthesis and Characterization of compounds
- 3. Mechanistic Analysis and Diagnostic NMR spectra
- 4. Details of X-ray crystallographic characterization of complex 8
- 5. Computational details and free energy tables
- 6. References

Molecular structures (MOL2) and an archive (ZIP) containing animations (GIF) of imaginary frequencies corresponding to transition states are provided separately

S1. General Procedures

All manipulations were carried out using standard Schlenk or Glove-box techniques under purified argon using rigorously dried solvents. All NMR analyses were performed in Teflon-capped J. Young NMR tubes. ¹H and ¹³C NMR spectra were recorded on a Bruker Avance 400 or 500 MHz spectrometers. Chemical shifts are reported in ppm and appropriately referenced to the corresponding solvent resonances.¹ "Pt-satellites" and "Pt-shoulders" imply resolved and unresolved doublets, respectively, observed as a result of coupling to the ¹⁹⁵Pt nucleus. Elemental analyses were performed by analytical services at the Department of Chemistry of the University of British Columbia. ESI-MS (high resolution and low resolution) recorded on a JEOL AccuTOF LC-plus (JMS T100LP) instrument were compared with isotopic mass envelopes, and the most-intense peaks are reported. All reagents for which syntheses are not given are commercially available and were used as received without further purification. $[(CH_3)_2 Pt^{II}(\mu-SMe_2)]_2$ was prepared as previously reported.² 99.8%-deuterated CD₃OD or CD₃OH (Sigma-Aldrich) were used for H/D exchange experiments.

S2. Synthesis and characterization of compounds

S2.1. DPKPt^{II}(CH₃)₂, complex 1:

Complex 1 was synthesized as previously reported³ from 220.2 mg (1.2 mmol) DPK and 343.1 mg

 $[(CH_3)_2Pt^{II}(\mu-SMe_2)]_2$ using ca. 10 mL THF as solvent. Complex **1** was isolated as 450.6 mg of a brick-red colored microcrystalline solid

in 92% yield. The ¹H and ¹³C NMR spectra are being provided below for reference purposes.

¹**H NMR** (25 °C, 500.15 MHz, CD₃CN, ppm) δ : 8.80 (d+Pt-satellites, $J_{H:H} = 5.0$ Hz, ${}^{3}J_{Pt:H} = 26.3$ Hz, 2H, py-6-CH), 8.13 (td, $J_{H:H} = 7.8$, 1.6 Hz, 2H, py-4-CH), 7.95 (d, $J_{H:H} = 7.9$ Hz, 2H, py-3-CH), 7.62 (ddd, $J_{H:H} = 7.4$, 5.5, 1.5 Hz, 2H, py-5-CH), 0.72 (s+Pt-satellites, ${}^{3}J_{Pt:H} = 85.9$ Hz, 6H, Pt^{II}CH₃)

¹³**C NMR** (25 °C, 125.78 MHz, CD₃CN, ppm) δ: 190.06 (C=O), 154.37 (py), 151.14 (J_{Pt-C} = 16.9 Hz, py), 138.95, 129.52 (J_{Pt-C} = 24.8 Hz, py), 126.13 (J_{Pt-C} = 12.0 Hz, py), -16.77(${}^{1}J_{Pt-C}$ = 829.6 Hz, Pt^{II}CH₃)

Figure S2. ¹³C NMR spectrum of complex 1 in CD₃CN

S2.2. Synthesis of Complex 2:

• Synthesis of 2,2'-(1-methoxyethane-1,1-diyl)dipyridine (ligand):

300 mg (1.63 mmol) di(2-

pyridyl)ketone (DPK) was weighed out into a 100 mL Schlenk tube equipped with a stir-bar inside the glove-box and dissolved in. ca. 50 mL

THF. The Schlenk tube was capped with a rubber septum and taken out of the glove-box and attached to an Argon manifold and cooled to 0 °C in an ice-bath. With stirring, 1.1 mL of a 1.6 M ether solution methyllithium (1.1 equiv.) was added drop-wise over ~5 minutes to the solution through the septum via a syringe. Upon addition, the solution immediately assumed a blue-purple coloration. After addition was complete, the reaction mixture was stirred for 2 hours and the ice-bath was removed. The reaction mixture was allowed to stir for an additional 6 hours during which time the blue-purple coloration persisted (bleaching of the blue-purple coloration towards an orange, brown or yellow solution is indicative of exposure to air/ moisture and should be strictly avoided). After this time, the Schlenk tube was re-immersed into an ice-bath and 30 mL of a saturated aqueous solution of ammonium chloride was added drop-wise via syringe to the reaction mixture with vigorous stirring. Immediately, the blue-purple coloration faded and an orange sludge appeared. The ice-bath was removed and the mixture carefully decanted into a separatory funnel. The organic layer was extracted with 200 mL dichloromethane (50 mL x 4 fractions), dried over anhydrous sodium sulfate (drastically decreased yields were observed when anhydrous magnesium sulfate was used) and the solvent was removed in a rotary evaporator at 30 °C to yield a viscous oil. The oil was carefully transferred to the glovebox, dissolved in 15 mL super-dehydrated benzene and subsequently dried by lyophilization (~ 6 hours) to obtain a yellow oil. The oil was dissolved in 25 mL THF in a vial and to it was slowly added 200 mg of sodium hydride. Slow effervescence of H_2 was observed as the reaction mixture assumed a green color. The vial was lightly capped to allow escape of H₂. The contents were vigorously stirred for ~12 h inside the glove-box during which the reaction mixture became deep-purple. Unreacted sodium hydride could be seen at the bottom of the reaction mixture as fine white solids. The reaction mixture was subsequently filtered through a

glass frit (fine) to remove unreacted sodium hydride directly into a 50 mL screw-cap vial equipped with a stirbar. The contents of the vial and the frit were washed with an additional 20 mL THF (10 mL x 2 fractions). The screw-cap vial was capped with a Teflon-coated septum and taken out the glove-box and 110 μ L methyl iodide (1.1. equiv.) was added via a gas-tight microliter syringe. The reaction mixture immediately assumed a green-brown color. The reaction mixture was stirred in the screw-capped vial for 6 hours during which the mixture became orange in color. No precipitation was observed. The contents were opened to air and the solution carefully transferred into an Erlenmeyer flask containing 100 mL dichloromethane. Immediately, copious amounts of a white precipitate formed. The mixture was transferred to a separatory funnel and the organic layer was washed with brine to remove inorganic impurities (e.g. sodium iodide). The organic layer was found to be detrimental to yields) and dried under dynamic high vacuum to obtain 305 mg of 2,2'-(1-methoxyethane-1,1-diyl)dipyridine as a yellow colored oil in 89% yield. The crude ligand was used *as-is* for the synthesis of complex **2**.

¹**H NMR** (25 °C, 500.15 MHz, CDCl₃, ppm) δ: 8.66 (m, 2H, py-6-CH), 7.64 (vt, *J*_{H-H} = 7.8 Hz, 2H, py-4-CH), 7.56 (vd, *J*_{H-H}=7.8 Hz, py-3-CH), 7.12 (ddd, *J*_{H-H} = 4.95, 4.95, 1.4 Hz, 2H, py-5-CH), 3.25 (s, 3H, OCH₃), 2.05 (s, 3H, CH₃)

¹³**C NMR** (25 °C, 125.78 MHz, CDCl₃, ppm) δ: 163.98 (py), 148.87 (py), 136.49 (py), 122.00 (py), 121.20 (py), 83.66 (py₂C(OCH₃)(CH₃)), 51.21 (OCH₃), 22.32 (CH₃)

ESI-MS: Calculated for $C_{13}H_{14}N_2O$: 214.1; Found 214.1

GCMS: Analysis was performed with Shimadzu *GCMS-QP2010 Ultra* gas chromatograph mass spectrometer equipped with *InertCap 5MS/Sil* capillary column (GL Sciences, 30 m × 0.25 mm, 0.25 µm) and electron ionization quadrupole mass spectrometer with helium as carrier gas. The column temperature was controlled as follows: 50 °C for 2 min, 10 °C/min to 300 °C for 3 min. 2,2'-(1-methoxyethane-1,1-diyl)dipyridine was observed at a retention time of 16.2 min, with mass fragments $(m/z) = 199 [(py_2C(OCH_3))]^+$, 184 $[(py_2C(CH_3))]^+$, 136 $[(pyC(CH_3)(OCH_3))]^+$.

Figure S3. ¹H NMR spectrum of 2,2'-(1-methoxyethane-1,1-diyl)dipyridine in CDCl₃

50 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -5

• Synthesis of 2,2'-(1-methoxyethane-1,1-diyl)dipyridine dimethylplatinum(II), complex 2:

 $120 mg (560 \mu mol) 2,2'-(1-methoxyethane-1,1-diyl) dipyridine was dissolved in ca. 3 mL THF in a vial in the glove box. In a separate vial equipped with a stir-bar, 161 mg (280 \mu mol) [(CH_3)_2 Pt^{II}(\mu-SMe_2)]_2 was weighed a stir-bar with a stir-bar$

out and dissolved in ca. 2 mL THF. The solution of the ligand was added to the vial containing the Ptprecursor with

stirring. An additional ca. 3 ml (1.5 mL x 2 times) was used to ensure quantitative transfer of the ligand. After completion of addition, a homogenous yellow colored solution resulted. The solution was stirred for a period of 8 hours and exposed to dynamic vacuum to facilitate removal of SMe₂. After the volume reduced to ~ 2 mL, the resulting oily yellow-orange liquid was layered with ether and stored at -35 °C. Large yellow colored crystals (suitable for X-ray diffraction) were obtained. The supernatant was carefully decanted and the crystals were collected and dried to afford 209.5 mg of complex **2** as an analytically pure yellow solid in 85 % yield. An additional crop (~20 mg) recovered from the supernatant was found to also contain the target product; however, contaminated with free ligand and other byproducts. Since the yield from the first recrystallization was satisfactory, further attempts to recover complex **2** from the supernatant were not made.

¹**H NMR** (25 °C, 500.15 MHz, THF-*d*₈, ppm) δ : 8.92 (d+Pt-shoulders, *J*_{H-H} = 5.5 Hz, *J*_{Pt-H} ~ 27 Hz, 2H, py-6-CH), 7.93 (vt, *J*_{H-H} = 6.2 Hz, 2H, py-CH), 7.82 (d, *J*_{H-H} = 7.9 Hz, 2H, py-3-CH), 7.22 (m, 2H, py-4-CH), 3.68 (br, 3H, OCH₃), 3.13 (br, 3H, CH₃), 0.78 (s+Pt-satellites, ²*J*_{Pt-H}= 86.8 Hz, Pt^{II}-CH₃) ¹³C NMR (25 °C, 125.78 MHz, THF-*d*₈, ppm) δ : 161.2 (s, py-2-C), 151.6 (s+Pt-satellites, *J*_{Pt-C} = 21.6 Hz, py), 136.9 (py), 124.8 (s+Pt-satellites, *J*_{Pt-C} = 24. 2 Hz, py), 122.5 (py), 85.8 (C(CH₃)(OCH₃)), 52.5 (br, C(CH₃)(OCH₃), 20.48 (br, C(CH₃)(OCH₃)), -18.51 (s+Pt-satellites, ¹*J*_{Pt-C} = 858.6 Hz, Pt^{II}-CH₃) Elemental Analysis (C, H, N): Calculated: 41.00, 4.59, 6.38; Found: 40.97, 4.68, 6.55

Figure S6. ¹³C NMR spectrum of complex **2** in THF- d_8

13C (ppm)

Figure S7. 2D ¹H NOE NMR spectrum of complex **2** in THF-*d*₈ showing correlation of the Pt^{II}-CH₃ resonances (black circle •) with py-6-CH (green circle •), $py_2C(OCH_3)$ (blue circle •) and $py_2C(CH_3)$ (red circle •)

S2.3. Synthesis of Complex 3:

2,2'-(1,3-dioxolane-2,2-diyl)dipyridine ligand was prepared by the procedure reported.⁴ Complex 3 was

synthesized using a synthetic procedure identical to that used for complex **2** using 125 mg (547 μmol) of 2,2'-(1,3-dioxolane-2,2-diyl)dipyridine

and 157.5 mg (274 μ mol) of $[(CH_3)_2Pt^{II}(\mu$ -SMe₂)]_2. After trituration with ether and storage at -35 °C overnight, 201 mg of complex **3** was obtained as a yellow microcrystalline analytically pure solid in 81% yield.

¹**H NMR** (25 °C, 400.2 MHz, CDCl₃, ppm) δ : 8.39 (d+Pt-satellites, $J_{H-H} = 5.6$ Hz, ${}^{3}J_{Pt-H} = 24.5$ Hz, 2H, py-6-CH), 7.3-7.2 (m, 4H, overlapping with CDCl₃), 6.67-6.6 (m, 2H, py-5-CH), 3.67 (t, $J_{H-H} = 6$ Hz, 2H, CH₂), 3.46 (t, $J_{H-H} = 6$ Hz, 2H, CH₂), 0.33 (s+Pt-satellites, ${}^{2}J_{Pt-H} = 84.5$ Hz, 6H, Pt^{II}-CH₃)

¹³**C NMR** (25 °C, 100.64 MHz, CDCl₃, ppm) δ : 155.24, 151.32 (s+Pt-satellites, $J_{Pt-C} = 21.33$ Hz), 136.4, 125.67 (s+Pt-satellites, $J_{Pt-C} = 24.2$ Hz), 122.08, 108.25 (Py₂C), 66.60 (OCH₂), 65.93 (OCH₂), -19.20 (s+Pt-satellites, ¹ $J_{Pt-C} = 831$ Hz, Pt^{II}-CH₃)

Elemental Analysis (C, H, N): Calculated: 39.74, 4.00, 6.18; Found: 39.66, 4.10, 6.38

Figure S8. ¹H NMR spectrum of complex 3 in CDCl₃

Figure S10. ¹H-¹³C HMBC NMR spectrum of complex 3 in CDCl₃

S2.4. Synthesis of Complex 4: Synthesis of complex **4** was performed as previously reported⁵ using 50 mg of

provided below for reference purposes. Complex **4** was found to be stable in DMSO-*d*₆ solution at 25 °C for at least a weak under air-free conditions.

¹**H NMR** (25 °C, 500.15 MHz, DMSO-*d*₆, ppm) δ : 9.09 (d+Pt-shoulders, *J*_{H-H} = 5.4 Hz, ³*J*_{Pt-H} ~ 22 Hz, 2H, py-6-CH), 8.52 (d, *J*_{H-H} = 8.2 Hz, 2H, py-3-CH), 8.32 (td, *J*_{H-H} = 7.8, 1.4 Hz, 2H, py-5-CH), 7.71 (m, 2H, py-4-CH), 0.85 (s+Pt-satellites, ²*J*_{Pt-H} = 85.5 Hz, 6H, Pt^{II}-CH₃)

S3. Mechanistic Studies

S3.1 Reaction of complex 1 with CD₃OD:

In situ monitoring: 8 mg of 1 was dissolved in 0.6 mL chilled CD₃OD (stored at -35 °C) in the glove-box and transferred into a J. Young NMR tube. The resulting orange-red solution was analyzed by NMR spectroscopy. Kinetic Analysis (*vide infra*) were performed using similarly prepared solutions.

¹**H NMR** (25 °C, 500.15 MHz, CD₃OD, ppm) spectrum recorded ~ 5minutes after dissolution. THF was used as internal standard for kinetic analysis. δ : 8.83 (dd+Pt-satellites, $J_{\text{H-H}} = 5.5$, 0.8 Hz, ${}^{3}J_{\text{Pt-H}} = 25.4$ Hz, 2H, py-6-CH), 8.19 (td, $J_{\text{H-H}} = 7.8$, 1.6 Hz, 2H, py-4-CH), 8.04 (ddd, $J_{\text{H-H}} = 7.9$, 1.5, 0.8 Hz, 2H, py-3-CH), 7.68 (ddd, $J_{\text{H-H}} = 7.7$, 5.5, 1.5 Hz, 2H, py-5-CH), 0.78 (s+Pt-satellites, ${}^{3}J_{\text{Pt-H}} = 84.6$ Hz, 6H, Pt^{II}-CH₃). Only trace Pt-CH₃ deuteration incorporation observed. δ : Pt^{II}-CH₃(0.78 ppm, s), Pt^{II}-CH₂D (0.77 ppm, t), Pt^{II}-CHD₂(0.75 ppm, p) with corresponding Pt-satellites, ${}^{3}J_{\text{Pt-H}} = 84.6$ Hz.

¹³**C NMR** (25 °C, 125.78 MHz, CD₃OD, ppm) spectrum recorded ~ 5 h after dissolution δ : 190.06 (C=O), 154.5 (py), 151.34 (J_{Pt-C} = 18.4 Hz, py), 139.38 (py), 129.73 (J_{Pt-C} = 24 Hz, py), 126.59 (py).

Figure S13. ¹³C NMR spectrum of complex 1-*d*₆ in CD₃OD (recorded ~5 h after dissolution)

250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 00 90 60 70 60 50 40 50 20 10 0 -10 -20 -30 -40

Determination of equilibrium isotope distribution:

8.0 mg of complex 1 was dissolved in 0.60 mL 1:1 v/v CD₃OD CD₃OH mixture (prepared by mixing 0.30 mL CD₃OD and 0.30 mL CD₃OH (essentially 1 : 1 molar ratio). Calculations based on density and molar mass give 12.31 M and 12.36 M for the individual concentrations, respectively (see Table S1 in the Computational Section). The resulting 33 mM solution of the complex was allowed to stand for 24 h and analyzed by ¹H NMR spectroscopy. Figure S14 shows the region of the spectrum corresponding to the ^vPt-CH_xD_{3x} ¹H NMR resonances ($x = 1, 2, 3; Y \neq 195$). The integral intensity of the pyridine signals was set to 2. No changes in the integral intensity ratio was observed after this time. The well-resolved peaks corresponding to the ^vPt-CH_xD_{3-x} ¹H NMR signals (i.e., not considering poorly resolved ¹⁹⁵Pt satellites) were used for calculation. The integral intensity ratios for the ^vPt-CH_xD_{3-x} signals (x = 1, 2, 3) were found to be: Pt-CH₃: Pt-CH₂D : Pt-CHD₂ = 0.92 : 1.18 : 0.42, which corresponds to the relative molar concentrations 0.92/3 : 1.18/2 : 0.42/1 = 1 : 1.92 : 1.37. Using ¹H NMR integration of the resulting signals, the equilibrium constants for reactions (1) and (2) were calculated as 0.64 and 0.72 (as shown below), and the corresponding reaction Gibbs energies are 0.26 and 0.20 kcal/mol, respectively, which are in reasonable agreement of the DFT-calculated values of 0.24 and 0.18 kcal/mol, respectively (see Table S2 in the Computational Section).

Figure S14. Pt^{II}-CH_{3-n}D_n region of the ¹H NMR spectrum of complex 1 recorded 24 h after dissolution in a 1:1 (v/v) mixture of CD₃OD: CD₃OH mixture

For the reaction (1),

 $Pt(CH_3) + CD_3OD \rightarrow Pt(CH_2D) + CD_3OH \quad (1)$

the equilibrium constant is given by:

$$K_{CH/CD,1} = \frac{[Pt(CH_2D)][CD_3OH]}{([Pt(CH_3)] \times 3)[CD_3OD]} = \frac{1.92 \times 12.35}{3 \times 12.30} = 0.64$$

where, the constant is statistically corrected per number of equivalent C-H bonds in the CH₃ ligand involved in equilibrium (1). The corresponding reaction Gibbs energy change is $\Delta G_{298K} = -0.593^{*}\ln(0.64) = 0.26$ kcal/mol.

Similarly, for the reaction (2),

$$Pt(CH_2D) + CD_3OD \rightarrow Pt(CHD_2) + CD_3OH \quad (2)$$

the equilibrium constant is given by:

$$K_{CH/CD,2} = \frac{([Pt(CHD_2)] \times 2)[CD_3OH]}{([Pt(CH_2D)] \times 2)[CD_3OD]} = \frac{1.37 \times 12.35}{1.92 \times 12.3} = 0.72$$

where, the constant is statistically corrected per number of equivalent C-H bonds CH₂D ligand and the number of equivalent C-D bonds in the CHD₂ ligand involved in equilibrium (2). The corresponding reaction Gibbs energy change is $\Delta G_{298K} = -0.593^* \ln(0.72) = 0.20 \text{ kcal/mol}$.

Isolation of 1-*d*₆: 50 mg of 1 was dissolved in 3 mL CD₃OD in the glove-box and the solution was stirred for a period of 5 hours. After this time, the solution was dried *in vacuo* to obtain 49 mg of a microcrystalline red solid with the same visual appearance as 1 in 96% yield. The product (1-*d*₆) was analyzed by ¹H and ¹³C NMR spectroscopy. The ¹H and ¹³C NMR spectra of complex 1-*d*₆ are identical to those of complex 1, except for the absence of the resonances corresponding to the Pt^{II}(CD₃)₂ fragment, as shown below. The NMR spectra of 1-*d*₆ in CD₃OD was found to persist for a week under air-free conditions at 25 °C.

Eyring Analysis: CD₃OD solutions of **1**, prepared as described above, were monitored by ¹H NMR spectroscopy at 25, 35, 45 and 55 °C at intervals of 6 minutes for a period of 30 minutes. The conversion of **1** was measured by integrating the Pt^{II} -CH₃ region (0.5-1.0 ppm) with respect to the pyridine C-H fragment (8.8 ppm). Error estimation was performed by the 'LINEST' function within the Microsoft Excel package.

Figure S17. Initial rates⁺ for the reaction of 1 with CD₃OD at 25, 35, 45, and 55 °C.

⁺C and C₀ are the total integral intensities of Pt-CH_xD_{3-x} fragments observed in the ¹H NMR spectra at t and t=0 respectively

Figure S18. Eyring analysis corresponding to the initial rates observed for 1 and error analysis

S3.2 Reaction of complex 2 with CD₃OD:

In situ monitoring: 4 mg of **2** was dissolved in 0.6 mL CD₃OD and the solutions were monitored by ¹H NMR spectroscopy at 25, 35, 45 and 55 °C at intervals of 10 minutes for a period of 90 minutes. The conversion of **2** was measured by integrating the Pt^{II} -CH₃ region (0.5-1.0 ppm) with respect to the pyridine C-H fragment (8.8 ppm). Error estimation was performed by the 'LINEST' function within the Microsoft Excel package.

Figure S19. Initial rates⁺ for the reaction of **2** with CD₃OD at 25, 35, 45, and 55 °C

⁺C and C₀ are the total integral intensities of Pt-CH_xD_{3-x} fragments observed in the ¹H NMR spectra at t and t=0 respectively

Figure S20. Eyring analysis corresponding to the initial rates observed for 2 and error analysis

Attempted isolation of 2- d_6 from reaction of 2 with CD₃OD: The reaction of 2 with CD₃OD was found to be incomplete even after 3 days at 25 °C, as shown in Figure S21 (ca. 60% deuteration of Pt^{II}-CH₃ fragments, inset)

S3.3 Synthesis of $[(CD_3)_2Pt^{II}(\mu-SMe_2)]_2$ and 2-d₆:

Synthesis of $[(CD_3)_2Pt^{II}(\mu$ -SMe₂)]_2: 80 mg (122 µmol) complex 1 was dissolved in 4 mL CD₃OD in a 20 mL screw-capped vial (equipped with a Teflon septum) inside the glove-box and stirred for 5 hours. After this time, the vial was taken out of the glove-box and 180 µL (20 equiv.) dimethylsulfide was added via a gas-tight microliter syringe through the septum. The vial was taken into the glove box and stirred for ~ 3 hours, during the course of which the solution assumed a pale pink color. The solution was layered with 4 mL ether and stored at -35 °C to obtain off-white needles (with pink edges). The supernatant was decanted carefully and 4 mL fresh ether was added and the vial was stored again at -35 °C. After this time, the needles no longer had any colored attributes. The supernatant was carefully decanted and the off-white needles were crushed and dried under vacuum to yield 42.4 mg of $[(CD_3)_2Pt^{II}(\mu$ -SMe₂)]_2 in 74% yield. Smaller-scale syntheses were significantly detrimental to yields.

¹H NMR (25 °C, 400.13 MHz, Acetone- d_{6} , ppm) δ : 2.75 (s+Pt-satellites, ³ J_{Pt-H} = 21.1 Hz, 12H, SCH₃)

Figure S22. ¹H NMR spectrum of $[(CD_3)_2Pt^{II}(\mu-SMe_2)]_2$ in Acetone- d_6

Synthesis of 2- d_6 : Complex 2- d_6 was synthesized using 25 mg of $[(CD_3)_2Pt^{II}(\mu-SMe_2)]_2$ (43 µmol) and 18 mg of 2,2'-(1methoxyethane-1,1-CH₃ OCH₂ diyl)dipyridine in a H₃C manner identical to D_3C that described for the THF Ν synthesis of 2. Figure 25 °C 0.5 equiv. $2 - d_6$ S23 shows the

absence of resonances corresponding to the Pt^{II}-CH₃ fragments in ¹H NMR spectrum.

Figure S23. ¹H NMR spectrum of **2**- d_6 in THF- d_8 (showing the absence of Pt^{II} - CH_3 resonances)

S3.4 Reaction of 1 with DMSO-*d*₆:

10 mg 1 was charged into a J. Young NMR tube and 0.6 mL DMSO- d_6 was added. An initially deep-red solution started to bleach in ~10 minutes at which point ¹H NMR analysis (Figure S24) revealed that

the major component of the reaction mixture was already free ligand (indicated by blue circles) and (DMSO- d_6)Pt^{II}(CH₃)₂ (Pt-CH₃ indicated by green square). Note (Figure S24, Inset): the doublet at 8.77 ppm with corresponding Pt-satellites (³*J*_{Pt-H} =22.5 Hz, orange diamonds) corresponds to the py-6-CH fragments of **1**; the doublet at 8.68 ppm does not have Pt-satellites. The Pt^{II}-CH₃ resonance of residual complex **1** is indicated by a red circle. In ~ 2h, the ¹H NMR spectrum (Figure S25) of the straw-colored corresponded to free DPK and (DMSO- d_6)Pt^{II}(CH₃)₂. In a separate experiment, 10 mg of [(CH₃)₂Pt^{II}(µ-SMe₂)]₂ was dissolved in DMSO- d_6 and was analyzed by ¹H NMR spectroscopy ~ 2 hours after dissolution (Figure S26). The resonance corresponding to the Pt-CH₃ fragment (0.50 ppm, ²*J*_{Pt-H} = 79.5 Hz) shown in Figure S26 is an exact match to that in Figure S25. Free SMe₂ appears as a singlet (without Pt-satellites) at 2.05 ppm.

Figure S24. ¹H NMR spectrum of **1** in DMSO- d_{6_7} ~10 min after dissolution:

0 8.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4 7.2 7.0 4.0 0.8 0.6 0.4 3.8 2.8 2.4 1.0 0.2 3.6 3.2 3.0 1H (ppm) 2.6 2.2 2.0 1.8 1.6 1.4 1.2 3.4

Figure S25. ¹H NMR spectrum of **1** in DMSO- d_{6} ~2 h after dissolution:

3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 114 foom .0 8.8 8.6 8.4 8.2 8.0 7.8 7.6 7.4 1.4 1.2 0.4 0.2 -0.2 7.2 3.8 3.4 0.6 0.0 3.6 1.0 0.8

Figure S26. ¹H NMR spectrum of [(CH₃)₂Pt^{II}(DMSO-*d*₆)]₂ in DMSO-*d*₆:

S3.5 Determination of KIEs for complexes $1/1-d_6$ and $2/2-d_6$:

Protonation of 1-d₆: 3 mg of 1-d₆ was dissolved in 0.25 mL CD₃OH in a capillary and quickly transferred to a J. Young NMR tube and inserted into the NMR spectrometer that had been pre-shimmed and pre-tuned to CD_3OD . The reaction of 1-d₆ with CD_3OH was monitored by ¹H NMR spectroscopy at 7-minute intervals. Figure S27 shows the comparison of the rate of protonation (k_H) to the rate of deuteration (k_D). As opposed to the deuteration reaction which maintains a constant rate of 8.4×10^{-3} min⁻¹, the rate of protonation was found to decrease over time. From rates of protonation (k_H) obtained from 3-point linear interpolations, the ratio of isotope effect was calculated to be $k_H/k_D = 2.6$ in initial rate conditions (7-21 min), further decreasing to $k_{\rm H}^2/k_{\rm D} = 1.4 (21-35 \text{ min})$ and $k_{\rm H}^3/k_{\rm D} = 0.6 (35-49 \text{ min})$. This is simply due to the thumb-rule that "deuterium" prefers to reside in the site corresponding to the higher frequency oscillator"⁶. Since the stretching frequencies of PtC-H and MeO-H fragments are ~2900 cm⁻¹ and ~3500 cm⁻¹, respectively, the isodesmic reactions $1-d_n$ + $CD_3OD \rightarrow 1$ - $d_{(n+1)} + CD_3OH$ are endergonic (see Table S2 and related discussion in the Computational Section). This implies that at any step, the reactants for the deuteration reaction are at a lower energy (therefore, higher barrier for reductive coupling) than the reactants for the protonation reaction. Qualitatively speaking, as the protonation reaction proceeds, the 'new' starting materials are at a lower energy, making subsequent barriers higher, and thus the reaction slower and slower. A full computational analysis of all isotopomers involved $(1-d_n; n = 0 \sim 6)$, including symmetrically and asymmetrically deuterated complexes, as well as secondary kinetic effects, while interesting, is beyond the scope of the current work.

Figure S27. Comparison of rates⁺ of reaction of 1 with CD₃OD (k_D , black squares) to that of 1-*d*₆ with CD₃OH (k_H , blue circles) with 3-point linear interpolations for k_H

⁺C and C₀ are the total integral intensities of Pt-CH_xD_{3-x} fragments observed in the ¹H NMR spectra at t and t=0 respectively

Protonation of 2-*d*₆: 2 mg 2-*d*₆ was dissolved in 0.25 mL CD₃OH in a capillary and quickly transferred to a J. Young NMR tube and inserted into the NMR spectrometer that has been pre-shimmed and pre-tuned to CD₃OD. The reaction of 2-*d*₆ with CD₃OH was monitored at 10 minutes intervals. Figure S28 shows the comparison of the initial rate of protonation (k_H; 10-60 mins) to the rate of deuteration (k_D; 10-60 mins). Based on initial rates, a k_H/k_D = 13.1 was calculated.

Figure S28. Comparison of rates⁺ of reaction of **2** with $CD_3OD(k_D, black)$ to that of **2**-*d*₆ with $CD_3OH(k_H, blue)$

+C and C₀ are the total integral intensities of Pt-CH_xD_{3-x} fragments observed in the ¹H NMR spectra at t and t=0 respectively

S3.6 Support for the electrophilic involvement of the keto fragment of DPK:

3.6.1 In situ observation of 5 and concomitant Pt^{II}-CH₃ deuteration: 3 mg (125 µmol) NaH was weighed

out into a vial and chilled in the freezer of the glove-box. To this vial was carefully added chilled (-35 °C) 0.6 mL CD_3OD . In a separate vial, 10 mg (24 µmol) complex 1 was weighed and the NaOCD₃ solution was carefully added.

Unlike neutral solutions of **1** in methanol which are orange-red, the alkaline solution of the complex assumed a pale peach-like color. The solution was transferred to a J. Young NMR tube and analyzed by ¹H and ¹³C NMR spectroscopy. At room temperature, the ¹H NMR spectrum of **5** indicates fluxional character of the complex, presumed to be because of rapid interconversion of isomers with *exo* and *endo* OCD₃ fragments, consistent with broadened ¹H resonances (*vide infra*). At -15 °C, the resonances sharpened and ¹³C NMR spectra indicated the absence of keto fragment (ca. 188 ppm) and the presence of a signal at 104.9 ppm (corresponding to the py₂**C**) fragment of the 'hemiketalate' complex, **5**. Deuteration ($k_D = 0.0021 \text{ min}^{-1}$) of the Pt^{II}-CH₃ fragment was observed at a rate much slower than that observed for the deuteration of **1** under neutral conditions ($k_D = 0.0084 \text{ min}^{-1}$). Attempts to observe the anionic **5** by ESI(-)-MS were unsuccessful.

¹**H NMR** (-15 °C, 400.13 MHz, CD₃OD, ppm) δ: 8.79 (d+Pt-shoulders, J_{H-H} = 5.34 Hz, 2H, py-6-CH), 8.24 (d, J_{H-H} = 7.86, 2H, py-CH), 7.98 (td, J_{H-H} = 7.7, 1.3 Hz, 2H, py-CH), 7.29 (td, 7.1, 5.8, 1.4 Hz, 2H, py-CH), 0.72 (s+Pt-satellites, ² J_{Pt-H} = 74.3 Hz, ~6H, Pt^{II}-CH₃)

¹³**C NMR** (-15 °C, 125.78 MHz, CD₃OD, ppm) δ: 163.6, 150.8, 137.3, 125.4, 125.1, 104.9 (py₂C), -19.0 (s+Pt-satellites, ${}^{1}J_{Pt-C} \sim 810$ Hz). An additional set of signals corresponding to a minor unidentified species were also observed (indicated by * in the 13 C NMR spectrum): 151.3, 139.4, 129.7, 126.6, -15.79

Figure S30. ¹³C NMR spectrum of **5** (-15 °C) in CD₃OD (*prepared as described above*)

Figure S31. Stacked ¹H NMR plot showing deuteration of Pt^{II}-CH₃ fragments of **5**

Figure S32. Rate⁺ of deuteration of the Pt^{II}-CH₃ fragments of **5** at 25 °C (*prepared as described above*)

⁺C and C₀ are the total integral intensities of Pt-CH_xD_{3-x} isotopologues observed in the ¹H NMR spectra at t and t=0 respectively

S3.6.2 Synthesis of 6: A Schlenk-tube was charged with 30 mg (73 μ mol) of **1** and a stir-bar inside the glove box. To this ~8 mL THF was added to obtain a wine-red solution of **1**. The tube was was capped with a rubber septum and taken out of the glove-box, and 5 μ L (1.1 equiv.) methyl iodide was added via gas-tight syringe through the septum at room temperature with stirring. Immediately, the wine-red color bleached to form a

pale-yellow suspension. After 10 minutes, 15 μ L of a 5 M solution of sodium methoxide in methanol was added. Immediately, a colorless supernatant and fine white precipitate was observed. The contents of the Schlenk-tube were dried under vacuum and taken into the glove-box. The solids

were re-dispersed in 5 mL THF and filtered through a 0.4 μ m PTFE syringe filter and the contents were evacuated to obtain 30.5 mg of **6** as a white analytically pure powder in 91% yield.

¹**H NMR** (25 °C, 400.2 MHz, C₆D₆, ppm) δ : 8.06 (d+Pt-satellites, $J_{\text{H-H}} = 5.5$. Hz, ${}^{3}J_{\text{Pt-H}} = 12.6$ Hz, 2H, py-6-CH), 7.51 (d, $J_{\text{H-H}} = 7.8$ Hz, 2H, py-3-CH), 6.87 (td, $J_{\text{H-H}} = 7.6$, 1.4 Hz, 2H, py-5-CH), 6.28 (m, 2H, py-4-CH), 3.72 (s, 3H, OCH₃), 1.59 (s+Pt-satellites, ${}^{2}J_{\text{Pt-H}} = 73.4$ Hz, 6H, equatorial Pt^{IV}-CH₃), 1.25 (s+Pt-satellites, ${}^{2}J_{\text{Pt-H}} = 70.5$ Hz, 3H, axial Pt^{IV}-CH₃)

¹³**C NMR** (25 °C, 400.2 MHz, C₆D₆, ppm) δ : 164.96 (s+Pt-satellites, $J_{Pt-C} = 11$ Hz, py), 145.21 (s+Pt-satellites, $J_{Pt-C} = 14.2$ Hz, py), 137.47 (s+Pt-shoulders, $J_{Pt-C} \sim 4$ Hz), 123.37 (s+Pt-satellites, $J_{Pt-C} = 13.4$ Hz, 121.21 (s+Pt-satellites, $J_{Pt-C} = 7.7$ Hz), 110.08 (s, py₂C), 49.54 (s, OCH₃), -10.97 (s+Pt-satellites, ¹ $J_{Pt-C} = 702.5$ Hz, equatorial Pt^{IV}-CH₃), -13.74 (s+Pt-satellites, ¹ $J_{Pt-C} = 688.8$ Hz, axial Pt^{IV}-CH₃)

Elemental Analysis: (C, H, N): Calculated: 39.56, 4.43, 6.15; Found: 39.20, 4.71, 6.20

Figure S33. ¹H NMR spectrum of **6** in C₆D₆

Figure S34. ¹H NMR spectrum of **6** in C_6D_6

Figure \$35. ${}^{1}H{}^{-13}C$ HMBC NMR spectrum of **6** in C_6D_6

S3.6.3. Synthesis of complex 7 and 8:

A Schlenk-tube was charged with 30 mg (73 µmol) of **1** and a stir-bar inside the glove box. To this ~8 mL THF was added to obtain a wine-red solution of **1**. The tube was capped with a rubber septum and taken out of the glove-box, and 5 µL (1.1 equiv.) methyl iodide was added via gas-tight syringe through the septum at room temperature with stirring. Immediately, the wine-red color bleached to form a pale-yellow suspension. The contents of the Schlenk-tube were dried under vacuum and taken into the glove-box. In a vial, 19 mg (1 equiv.) AgOTf was dissolved in 2 mL THF and the solution added to the solids in the Schlenk-tube with vigorous stirring. An additional 2 mL (1 mL x 2 times) was used to complete the transfer. Immediately a fine white precipitate (AgCl) and colorless supernatant were obtained. The contents were filtered through a 0.4 µm PTFE syringe filter and the obtained filtrate was dried under vacuum to obtain 38.5 mg of 7 as a fine white powder in 89% yield. Satisfactory Elemental Analysis could not be obtained owing to the hygroscopic nature of the complex. ¹H and ¹³C NMR spectra and High-resolution ESI-MS analysis are being provided to demonstrate sample homogeneity. For the observation of **8**, 15 µL water was added to a 0.6 mL THF-*d*₈ solution containing 18 mg of 7. Single crystals suitable for X-ray diffraction were obtained upon slow evaporation of the THF-solution of **8**.

¹**H NMR** (25 °C, 500.15 MHz, CD₃CN, ppm) δ : 8.82 (d+Pt-satellites, $J_{\text{H-H}} = 5.8$ Hz, ${}^{3}J_{\text{Pt-H}} = 15.7$ Hz, 2H, py-6-CH), 8.31 (td, $J_{\text{H-H}} = 8.0$, 1.4 Hz, 2H, py-CH), 8.19 (vd, $J_{\text{H-H}} = 7.9$ Hz, 2H, py-CH), 7.89 (ddd, $J_{\text{H-H}} = 7.5$, 5.4, 1.3 Hz, 2H, py-CH), 1.12 (s+Pt-satellites, ${}^{2}J_{\text{Pt-H}} = 69$ Hz, 6H, equatorial Pt^{IV}-CH₃), 0.93 (s+Pt-satellites, ${}^{2}J_{\text{Pt-H}} = 75.3$ Hz, 3H, axial Pt^{IV}-CH₃)

¹³**C NMR** (25 °C, 125.78 MHz, CD₃CN, ppm) δ : 190.6 (s+Pt-satellites, $J_{Pt-C} = 17.1$ Hz, **C=O**), 152.4 (s+Pt-satellites, $J_{Pt-C} = 4.8$ Hz, py), 150.47 (s+Pt-satellites, $J_{Pt-C} = 7.0$ Hz, py), 142.18 (py), 131.02 (s+Pt-satellites, $J_{Pt-C} = 14.0$ Hz, py), 128.57 (s+Pt-satellites, $J_{Pt-C} = 5.9$ Hz, py), -3.60 (s+Pt-satellites, ² $J_{Pt-C} = 739.3$ Hz, axial Pt^{IV}-CH₃), -5.79 (s+Pt-satellites, ² $J_{Pt-C} = 673.6$ Hz, equatorial Pt^{IV}-CH₃)

High-Resolution ESI+-MS: Complex 7: Calculated for C₁₄H₁₇N₂OPt: 423.0962; Found: 423.0964.

Figure S36. ¹H NMR spectrum of 7 in CD_3CN

22 90 88 86 84 82 80 78 38 38 34 32 30 28 28 24 22 20 18 1.5 1.4 1.2 1.0 0.8 0.6

Complex **8**, recorded after addition of H₂O to a THF-*d*₈ solution of complex 7:

¹**H NMR** (25 °C, 500.15 MHz, THF-*d*₈, ppm) δ : 8.61 (d+Pt-shoulders, *J*_{H-H} = 4.7 Hz, 2H, py-6-CH), 8.21 (td, *J*_{H-H} = 7.7. Hz, 2H, py-CH), 8.06 (d, *J*_{H-H} = 7.8 Hz, 2H, py-CH), 7.69 (t, *J*_{H-H} = 5.6 Hz, 2H, py-CH), 1.32 (s+Pt-satellites, ³*J*_{Pt-H} = 80.8 Hz, 3H, axial Pt^{IV}-CH₃), 0.97 (s+Pt-satellites, ³*J*_{Pt-H} = 70.8 Hz, 6H, equatorial Pt^{IV}-CH₃) ¹³**C NMR** (25 °C, 125.78 MHz, THF-*d*₈, ppm) δ : 157.70 (py), 147.01 (py), 142.03 (py), 127.70 (s+Pt-shoulders, py), 123.82 (py), 103.12 (py₂**C**(OH)₂), -9.64 (s+Pt-satellites, ¹*J*_{Pt-C} = 760.4 Hz, Pt^{IV}-CH₃), -9.94 (s+Pt-satellites, ¹*J*_{Pt-C} = 676.3 Hz, Pt^{IV}-CH₃)

High-Resolution ESI⁺-**MS** [Recorded in methanol, spectrum corresponds to methanol adduct of 7] Calculated for $C_{15}H_{21}N_2O_2Pt$: 456.1251, Found: 456.1246

Figure S38. ¹H NMR spectrum of 8 in THF-*d*₈

Figure S39. ¹³C NMR spectrum of **8** in THF- d_8

S3.6.4. Attempted reaction of complexes 1 and 2 with AcOD in THF-*d*₈:

10 mg (24 μ mol) **1** was dissolved in 0.5 mL THF- d_8 and the wine-red solution was transferred to a screw-cap NMR tube equipped with a septum and the NMR tube was sealed taken out of the glove-box. The solution was chilled to 0 °C using an ice-bath and 70 μ L (~50 equiv.) AcOD was injected through the septum. The tube was shaken and monitored by ¹H NMR spectroscopy (every one hour for 12 h, see Figure S40). The reaction of complex **2** was similarly attempted using 10 mg of **2** (22 μ mol) and 70 μ L (~50 equiv.) AcOD and monitored by ¹H NMR spectroscopy (see Figure S41). In both cases, while deuteration of the Pt-CH₃ fragments was observed, no methane loss was observed in the course of 12 h.

Figure S40. Stacked plot of the ¹H NMR spectra of the reaction of **1** with AcOD in THF-*d*₈:

Figure S41. Stacked plot of the ¹H NMR spectra of the reaction of **2** with AcOD in THF-*d*₈:

----- End of Section 3 -----

S4. Details of X-ray crystallographic characterization of complex 8

The crystal of complex **8** was mounted on a CryoLoop (Hampton Research Corp.) with a layer of light mineral oil and placed in a nitrogen stream at 123(2) K. Measurements were made on a Rigaku Varimax with HyPix diffractometer using mirror-monochromated Mo-K α radiation. The structure was solved by direct methods (SHELXT⁷). The structure was refined on F^2 by the full-matrix least-squares method using SHELXL⁸ using Olex2 program.⁹ The non-hydrogen atoms were anisotropically refined, while the hydrogen atoms were refined using the riding model. The molecular structure was disordered with a 0.947(4):0.053(4) ratio.

erystar Data and Data Contenion	1 ul ullictel 5
CCDC	2027312
Empirical formula	$C_{15}H_{19}F_3N_2O_5PtS$
Formula weight	591.47
Temperature/K	123
Crystal system	monoclinic
Space group	$P2_1/n$
a/Å	11.3867(2)
b/Å	13.3132(3)
$c/\text{\AA}$	12.4183(2)
α'°	90
β^{\prime}	92.717(2)
γ/°	90
Volume/Å ³	1880.42(6)
Ζ	4
$\rho_{\rm calc}{\rm g/cm^3}$	2.089
μ/mm^{-1}	7.631
F(000)	1136.0
Crystal size/mm ³	0.4 imes 0.2 imes 0.1
Radiation	Mo-K α ($\lambda = 0.71073$)
2Θ range for data collection/°	4.488 to 58.52
Index ranges	$-14 \le h \le 15, -17 \le k \le 16, -16 \le l \le 16$
Reflections collected	30286
Independent reflections	4591 [$R_{int} = 0.0438, R_{sigma} = 0.0274$]
Data/restraints/parameter	4591/0/262
Goodness-of-fit on F^2	1.195
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0259, wR_2 = 0.0528$
Final R indexes [all data]	$R_1 = 0.0299, wR_2 = 0.0536$
Largest diff. peak/hole / e Å ⁻³	0.87/-1.28

Currental	Data an	J Data	Callestion	Dawarratarra
Urystai	Data an	u Data	Conection	rarameters

----- End of Section 4 -----

S5. Computational Details

DFT calculations were performed using the M06 functional¹⁰ and def2-tzvp basis¹¹ set for all elements (default ECPs for Pt) as implemented in the Gaussian 16 package.¹² Visualization and vibrational analysis were performed by using the GaussView 6 Package.¹³ All structures were fully optimized in solvent (CH₃OH) using the SMD model.¹⁴ Free energies of 'deuterated' structures were calculated by performing frequency calculations on appropriately 'deuterated' (by specifying iso=2) structures in solvent. Since neat methanol serves as both as solvent and reactant, the free energy was corrected to account for the change in standard state¹⁵ (24.6 M for CD₃OD and 24.7 M for CD₃OH). No corrections were applied for other solutes. The free energy of methoxide- d_3 in solution was calculated by adding the free energy of solvation of the methoxide ion $(\Delta G_{\text{solvation}} = -107.6 \text{ kcal/mol})^{16}$ to the free energy of methoxide- d_3 calculated by DFT in the gas-phase (see Table S1). Connectivity between the transition states and corresponding intermediates on either side were established by means of intrinsic reaction coordinate (IRC) calculations at the same level of theory. Analytical frequency calculations (at 298.15 K and 1 atm.) performed on the resultant geometries conformed to exactly ZERO imaginary frequencies for all ground states and exactly ONE imaginary frequency for the transition states. Gibbs free energies are reported as the sum of solvent-corrected electronic and thermal free energies. All geometries are provided as MOL2 files which can be directly opened in any molecule editor, such as (https://www.ccdc.cam.ac.uk), Avogadro (https://avogadro.cc) Mercury or Imol (http://jmol.sourceforge.net). Animations corresponding to imaginary frequencies from vibrational analysis are provided as GIF files.

Table S1. Free energy calculations for solvents and methoxide ions

Standard State Corrections (SSC) for Solvents											
	density (kg/m3)	Molar Mass	Conc. (M)	SSC (kcal/mol)	a.u.						
CD3OD			1	No correction	-115.692696						
CD3OD, neat	888	36.06	24.62562396	3.795444756	-115.686647						
CD3OD in 1:1 v/v CD3OD: CD3OH	888	36.06	12.31281198	3.384408477	-115.681254						
CD3OH			1	No correction	-115.689152						
CD3OH, neat	867	35.06	24.72903594	3.797929765	-115.683100						
CD3OH in 1:1 v/v CD3OD: CD3OH	867	35.06	12.36451797	3.386893487	-115.677702						
Calculation of	of free energy of solavtio	n of methoxide io	n in methanol so	lvent							
$\Delta G(MeO \text{ in Methanol}) = \Delta G(MeO \text{ in Gas-phase}) + \Delta G(solvation)$											
methoxide-d3, gas					-115.070323						
methovide-d3 solvated					-115 236854						

Standard State Correction: -0.593*ln[0.0409/Concentration(M)]

Table S2. Isodesmic e	quations for the sec	juential reactions of com	plex 1 with 1:1 CD	$O_3OD: CD_3OH(v/v)$
-----------------------	----------------------	---------------------------	--------------------	----------------------

1 1		1			0	° (, ,
In 1:1 CD3OD: CD3OH						∆G (kcal/mol)
1 + CD3OD (12.31 M) → 1-d1 + CD3OH (12.36 M)	-807.500847	-115.681254	\rightarrow	-807.504023	-115.677702	0.24
1-d1 + CD3OD (12.31 M) → 1-d2 + CD3OH (12.36 M)	-807.504023	-115.681254	\rightarrow	-807.507293	-115.677702	0.18
In neat CD3OD						
1 + CD3OD (24.6 M) → 1-d1 + CD3OH	-807.500847	-115.686647	\rightarrow	-807.504023	-115.689152	-3.56

Table S3. Free energies corresponding to Scheme 5a in the manuscript

				SUM	REL (kcal/mol)	Notes
			Protonation o	f 1 with TfOD (strong acid)	
1 + TfOD	-807.500847	-962.114077		-1769.614924	0.0	
TS1	-1769.609006			-1769.609006	3.7	Transition state for the direct protonation of the PtII- center of 1 without assistance from either ligand or solvent molecule
Int1 + OTf ⁻	-807.917152	-961.705091		-1769.622243	-4.6	Owing to a strong acid, formation of PtIV-D intermediate is exergonic

Table S4. Free energies corresponding to Scheme 5b in the manuscript

Protonation of 1 with AcOD (weak acid)												
1 + CD3OD + AcOD	-807.500847	-115.686647	-229.036193	-1152.223687	0.0							
TS2	-1152.183300			-1152.183300	25.3	Transition state for the protonation of the PtII-center of 1 with pseudoaxial assistance from solvent molecule						
Int2 + OAc⁻	-923.614710	-228.579508		-1152.194218	18.5	Owing to a weak acid acid, formation of PtIV-D intermediate is endergonic						

Table S5. Free energies corresponding to Scheme 5c in the manuscript

				SUM	REL (kcal/mol)	Notes
			Protonation A	FTER Hemiketa	I Formation	
1 + 2CD3OD + AcOD	-807.500847	-231.373294	-229.036193	-1267.910334	0.0	
						Transition State for the formation of hemiketal
TS3 + AcOD	-1038.812705	-229.036193		-1267.848898	38.6	intermediate
						Owing to a strong acid, formation of PtIV-D
Int3 + CD3OD + AcOD	-923.179946	-115.686647	-229.036193	-1267.902786	4.7	intermediate is exergonic
TS4 + CD3OD	-1152.181889	-115.686647		-1267.868536	26.2	Protonation of the PtII-center by acetic acid; assisted by pseudoaxial coordination of hemiketal OD fragment
TS5 + AcOD	-1038.813660	-229.036193		-1267.849853	38.0	Direct Protonation of the Pt-CH3 bond

	a.	u.			
			SUM	REL (kcal/mol)	Notes
-807.500847	-231.373294		-1038.874141	0.00	Starting Materials
-923.166479	-115.686647		-1038.853126	13.19	Formation of neutral 'hemiketalate' PtD intermediate
-923.139053	-115.686647		-1038.825700	30.40	Transition State for C-D reductive Coupling from Int1
-923.151644	-115.686647		-1038.838291	22.50	Zwitterionic sigma complex after reductive coupling
-923.612110	-115.241797		-1038.853907	12.70	Formation of cationic 'hemiketal' Pt-D intermediate
-923.599250	-115.241797		-1038.841047	20.77	Transition State for C-D reductive Coupling from Int6
-923.615294	-115.241797		-1038.857091	10.70	Formation of cationic Pt-(D-CH3) sigma complex
-923.615465	-115.241797		-1038.857262	10.59	Formation of cationic Pt-(H-CH2D) sigma complex
-923.600469	-115.241797		-1038.842266	20.00	Transition State for C-H oxidative addition
-923.612747	-115.241797		-1038.854544	12.30	Formation of 'hemiketal' Pt-H intermediate, isotopomer of Int6
-1038.798079			-1038.798079	47.73	Transition State for Associative Methane Loss
-998.404551	-40.468066		-1038.872617	0.96	Monomethyl PtII product, if methanolysis had occurred
-807.504023	-115.686647	-115.689152	-1038.879822	-3.56	Formation of mono-deuterated product and release of 1M CD3OH
	-807.500847 -923.166479 -923.139053 -923.151644 -923.612110 -923.61210 -923.615294 -923.615465 -923.600469 -923.612747 -1038.798079 -998.404551 -807.504023	a. -807.500847 -231.373294 -923.166479 -115.686647 -923.139053 -115.686647 -923.151644 -115.686647 -923.612110 -115.241797 -923.615294 -115.241797 -923.615465 -115.241797 -923.612465 -115.241797 -923.612747 -115.241797 -923.612747 -115.241797 -923.612747 -115.241797 -923.612747 -115.241797 -923.612747 -115.241797 -998.404551 -40.468066 -807.504023 -115.686647	a.u. Image: Note of the system of the sys	a.u. Image: Sum (SUM) -807.500847 -231.373294 -1038.874141 -923.166479 -115.686647 -1038.853126 -923.139053 -115.686647 -1038.853126 -923.139053 -115.686647 -1038.853920 -923.151644 -115.686647 -1038.838291 -923.612110 -115.241797 -1038.853907 -923.615294 -115.241797 -1038.857091 -923.615465 -115.241797 -1038.857262 -923.615465 -115.241797 -1038.857262 -923.615465 -115.241797 -1038.857262 -923.615465 -115.241797 -1038.857262 -923.612747 -115.241797 -1038.854544 -1038.798079 -1038.798079 -1038.798079 -998.404551 -40.468066 -1038.872617 -807.504023 -115.68647 -115.689152 -1038.879822	a.u. SUM REL (kcal/mol) -807.500847 -231.373294 -1038.874141 0.00 -923.166479 -115.686647 -1038.853126 13.19 -923.139053 -115.686647 -1038.853126 30.40 -923.151644 -115.686647 -1038.853907 30.40 -923.612110 -115.241797 -1038.853907 12.70 -923.615294 -115.241797 -1038.857091 10.70 -923.615465 -115.241797 -1038.857091 10.70 -923.615456 -115.241797 -1038.857091 10.70 -923.615465 -115.241797 -1038.857091 10.70 -923.615465 -115.241797 -1038.857041 10.59 -923.615465 -115.241797 -1038.857041 10.59 -923.612747 -115.241797 -1038.857042 10.59 -923.612747 -115.241797 -1038.854544 12.30 -1038.798079 -1038.872617 0.96 -1038.798079 -40.468066 -1038.872617 0.96 -807.50402

Table S6. Free energies corresponding to Scheme 6 in the manuscript (*rate determining step is highlighted in orange*)

Table S7. Free energies corresponding to Scheme 7 in the manuscript (*rate determining step is highlighted in orange*)

First Deuteration of 1			SUM	REL (kcal/mol)	Notes
1 + 2*CD3OD(neat)	-807.500847	-231.373294	-1038.874141	0.00	Starting Materials
TS7 + methoxide-d3(solvated)	-923.599250	-115.241797	-1038.841047	20.77	C-D reductive coupling
TS8 + methoxide-d3(solvated)	-923.600469	-115.241797	-1038.842266	20.00	C-H oxidative addition
First Protonation of 1-d6					
1-d6 + 2*CD3OH(neat)	-807.520221	-231.3662	-1038.886420	0.00	Starting Materials
TS10 + methoxide-d3(solvated)	-923.613293	-115.241797	-1038.855090	19.66	C-D reductive coupling
TS11 + methoxide-d3(solvated)	-923.612163	-115.241797	-1038.853960	20.37	C-H oxidative addition

Figure S42. Potential energy scan demonstrating gradual energy increase as a function of Pt(20)-C(23)H₃ distance of **Int7** (without a saddle point)

Energy (kcal/mol) scaled relative to **Int4**. Scan performed using modified redundant internal coordinates at the m06/def2-tzvp level with smd solvation in methanol

				X = OCD3			X = OAc	
Reaction of 2 with X D (X = OCD3 or	Notos	Complex	XD = CD3OD	CLIM		XD = AcOD	CUM	
UAC J	Noles			SUIVI	REL (KCal/mol)		SUIVI	REL (RCal/mol)
2p + XD	Complex 2 with OMe fragment exo to the PtII-center	-887.204933	-115.686647	-1002.891580	0.00	-229.036193	-1116.241126	0.00
TS12 + XD	TS for Ring-flip isomerization	-887.185963	-115.686647	-1002.872610	11.90			
2 + XD	Complex 2 with OMe fragment endo to the PtII-center	-887.203751	-115.686647	-1002.890398	0.74			
TS13	Transition State for PtII-protonation	Х	Х	Х	Х	-1116.209685	-1116.209685	19.73
Int11 + X	Cationic PtIV-D intermediate	-887.642370	-115.241797	-1002.884167	4.65			
TS14 + X	Transition State for C-D reductive Coupling from Int9	-887.629271	-115.241797	-1002.871068	12.87			
Int12 + X	Formation of cationic Pt-(D-CH3) sigma complex	-887.644831	-115.241797	-1002.886628	3.11	-228.596077	-1116.240908	0.14
TS15 + X	Transition State for C-H oxidative addition from sigma complex	-887.630441	-115.241797	-1002.872238	12.14			
Int13 + X	Cationic PtIV-H intermediate after C-H oxidative elimination	-887.643023	-115.241797	-1002.884820	4.24	-228.596077	-1116.239100	1.27
TS16	Deprotonation of the PtIV-H intermediate	Х	Х	Х	Х	-1116.210933	-1116.210933	18.95
TS17 / TS17'	Transition State for Associative Methane Loss	-1002.825087		-1002.825087	41.72	-1116.203112	-1116.203112	23.85
2-d1 + XH	Formation of mono-deuterated product and release of 1M CD3OH	-887.208151	-115.689152	-1002.897303	-3.59			

Table S8. Free energies for the reaction of **2** with CD₃OD and AcOD (Scheme 8 in the manuscript)

Table S9. Estimation of the barriers for Pt^{II} -protonation of **2** and **2-***d*₆ with AcOD (Scheme 9 in the manuscript)

			SUM	Rel (kcal/mol)		
Reaction of 2 with AcOD						
2p + AcOD	-887.204933	-229.036193	-1116.241126	0.00		
2 + AcOD	-887.203751	-229.036193	-1116.239944	0.74		
TS13	-1116.209685		-1116.209685	19.73		
					kH/kD =	6.15
Reaction of 2-d6 with AcOH						
2p-d6 + AcO H	-887.224283	-229.032649	-1116.256932	0.00		
2-d6 + AcOH	-887.223073	-229.032649	-1116.255722	0.76		
TS18	-1116.227208		-1116.227208	18.65		

Fable S10. Estimation of the barri	ers for Pt ^{II} -protonatio	n of 2 and 2 - <i>d</i> ₆ with CD ₃ OD	(Scheme 10 in the manuscript)

Reaction of 2 with CD3OD						
2p + CD3OD	-887.204933	-115.686647	-1002.891580	0.00		
2 + CD3OD	-887.203751	-115.686647	-1002.890398	0.74		
TS14 + methoxide-d3	-887.629271	-115.241797	-1002.871068	12.87		
TS15 + methoxide-d3	-887.630441	-115.241797	-1002.872238	12.14		
					kH/kD =	1.73
Reaction of 2-d6 with CD3OH						
2p-d6 + CD3OH	-887.224283	-115.683100	-1002.907383	0.00		
2-d6 + CD3OH	-887.223073	-115.683100	-1002.906173	0.76		
TS19 + methoxide-d3	-887.646794	-115.241797	-1002.888591	11.79		

References:

- Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. NMR Chemical Shifts of Trace Impurities: Common Laboratory Solvents, Organics, and Gases in Deuterated Solvents Relevant to the Organometallic Chemist. *Organometallics* 2010, 29 (9), 2176–2179. https://doi.org/10.1021/om100106e.
- (2) Scott, J. D.; Puddephatt, R. J. Ligand Dissociation as a Preliminary Step in Methyl-for-Halogen Exchange Reactions of Platinum(II) Complexes. *Organometallics* 1983, 2 (11), 1643–1648. https://doi.org/10.1021/om50005a028.
- (3) Zhang, F.; Broczkowski, M. E.; Jennings, M. C.; Puddephatt, R. J. Oxidative Addition Chemistry of Dimethyl(Dipyridyl Ketone)Platinum(II). *Can. J. Chem.* 2005, 83 (6–7), 595–605. https://doi.org/10.1139/v05-028.
- (4) Barbasiewicz, M.; Mąkosza, M. Intermolecular Reactions of Chlorohydrine Anions: Acetalization of Carbonyl Compounds under Basic Conditions. Org. Lett. 2006, 8 (17), 3745–3748. https://doi.org/10.1021/ol0613113.
- (5) Monaghan, P. K.; Puddephatt, R. J. Oxidation of Dimethylplatinum(II) Complexes with Alcohols: Synthesis and Characterization of Alkoxoplatinum(IV) Complexes. Organometallics 1984, 3 (3), 444–449. https://doi.org/10.1021/om00081a019.
- Parkin, G. Temperature-Dependent Transitions Between Normal and Inverse Isotope Effects Pertaining to the Interaction of H–H and C–H Bonds with Transition Metal Centers. *Acc. Chem. Res.* 2009, 42 (2), 315–325. https://doi.org/10.1021/ar800156h.
- (7) Sheldrick, G. M. SHELXT Integrated Space-Group and Crystal-Structure Determination. *Acta Crystallogr. Sect. A Found. Adv.* **2015**, *71* (1), 3–8. https://doi.org/10.1107/S2053273314026370.
- (8) Sheldrick, G. M. Crystal Structure Refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015, 71 (1), 3–8. https://doi.org/10.1107/S2053229614024218.
- (9) Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2 : A Complete Structure Solution, Refinement and Analysis Program. J. Appl. Crystallogr. 2009, 42 (2), 339–341. https://doi.org/10.1107/S0021889808042726.
- (10) Zhao, Y.; Truhlar, D. G. The M06 Suite of Density Functionals for Main Group Thermochemistry, Thermochemical Kinetics, Noncovalent Interactions, Excited States, and Transition Elements: Two New Functionals and Systematic Testing of Four M06-Class Functionals and 12 Other Function. *Theor. Chem. Acc.* 2008, 120 (1–3), 215–241. https://doi.org/10.1007/s00214-007-0310-x.
- Weigend, F.; Ahlrichs, R. Balanced Basis Sets of Split Valence, Triple Zeta Valence and Quadruple Zeta Valence Quality for H to Rn: Design and Assessment of Accuracy. *Phys. Chem. Chem. Phys.* 2005, 7 (18), 3297–3305. https://doi.org/10.1039/b508541a.
- (12) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V; Izmaylov, A. F.; Sonnenberg, J. L.; Williams; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.;

Foresman, J. B.; Fox, D. J. Gaussian 16 Rev. B.01. 2016.

- (13) Dennington, R.; Keith, T. A.; Millam, J. M. GaussView Version 6. 2019.
- (14) Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. *J. Phys. Chem. B* 2009, *113* (18), 6378–6396. https://doi.org/10.1021/jp810292n.
- (15) Sparta, M.; Riplinger, C.; Neese, F. Mechanism of Olefin Asymmetric Hydrogenation Catalyzed by Iridium Phosphino-Oxazoline: A Pair Natural Orbital Coupled Cluster Study. *J. Chem. Theory Comput.* 2014, 10 (3), 1099–1108. https://doi.org/10.1021/ct400917j.
- (16) Carvalho, N. F.; Pliego, J. R. Cluster-Continuum Quasichemical Theory Calculation of the Lithium Ion Solvation in Water, Acetonitrile and Dimethyl Sulfoxide: An Absolute Single-Ion Solvation Free Energy Scale. *Phys. Chem. Chem. Phys.* **2015**, *17* (40), 26745–26755. https://doi.org/10.1039/c5cp03798k.