Controlling multiple orderings in metal thiocyanate molecular perovskites A{Ni[Bi(SCN)₆]}

Jie Yie Lee¹, Sanliang Ling², Stephen P. Argent¹, Mark S. Senn³, Laura Cañadillas-Delgado⁴, and Matthew J. Cliffe ^{*1}

¹School of Chemistry, University Park, Nottingham, NG7 2RD, United Kingdom

²Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
 ³Department of Chemistry, University of Warwick, Gibbet Hill, Coventry CV4 7AL, United Kingdom

⁴Institut Laue Langevin, 71 avenue des Martyrs - CS 20156, 38042 Grenoble, France.

January 7, 2021

Contents

Lis	List of Figures								
Lis	st of Tables	2							
1	Synthesis 1.1 Synthesis of 2 K{Ni[Bi(SCN) ₆]}	3 3							
2	 X-ray Diffraction Measurements 2.1 Single Crystal X-ray Diffraction 2.2 Single Crystal Neutron Diffraction 2.3 Powder X-ray Diffraction 	3 3 3 5							
3	Tolerance Factor Calculations	10							
4	Density Functional Theory Calculations	10							

List of Figures

1	Gua(SCN) viewed along b	6
2	Diffuse scattering in 4 with symmetry averaging applied ($m\bar{3}$)	6

*matthew.cliffe@nottingham.ac.uk

3	Rietveld fit of synchrotron powder X-ray diffraction data of compound 3 . The calculated pattern is shown in light blue, the experimental data in dark blue and the differ-	
4	ence in grey	7
	on low Q region. The calculated pattern is shown in light blue, the experimental data in dark blue and the difference in grey.	7
5	Rietveld fit of laboratory powder X-ray diffraction data of compound 2 . The calculated pattern is shown in light red, the experimental data in dark red and the difference in	•
	grey	8
6	Rietveld fit of laboratory powder X-ray diffraction data of compound 4 . The calculated pattern is shown in light green, the experimental data in dark green and the difference	
	in grey	8
7	DFT optimised models of orderings in 2 viewed along the <i>c</i> axis	12
8	Symmetry analysis of the resulting spacegroup derived from the combination of conventional octahedral tilts with a complex conventional tilt with periodicity of four ($[\frac{1}{2}\frac{1}{2}\frac{1}{4}]T_2$	
	irrep) along a single axis in the presence of rocksalt M site order (R_2^+ irrep.). Struc-	
	tures with two tilts, which are not feasible in NCS-perovskites have a grey background. Non-centrosymmetric spacegroups are shown in bold.	12
9	Venn diagram showing the secondary order parameters deriving from the given modes in the $P\bar{4}2c$ structure. Note that Jahn-Teller distortions on alternating M-sites (R_3^- irrep)	
	could stabilise the desired complex T_2 tilt in the presence of rocksalt M-site order	13

List of Tables

Single crystal experimental details for compounds 1 and 2	4
Single crystal experimental details for compounds 3 , 4 and Gua(SCN)	5
Rietveld refinement fit metrics for 3 refined using the SCXD model against synchrotron	
powder X-ray diffraction data	9
DFT-optimised unit cell parameters for models of compound ${\bf 2}$ with seven different K ⁺	
orderings, and the DFT-optimised experimental structure	11
DFT derived energy for compound 3 for the SCXD derived model and models with	
inverted $MeNH_3^+$ cations	11
	Single crystal experimental details for compounds 3 , 4 and Gua(SCN) Rietveld refinement fit metrics for 3 refined using the SCXD model against synchrotron powder X-ray diffraction data

1 Synthesis

1.1 Synthesis of 2 K{Ni[Bi(SCN)₆]}

KSCN (6 mmol, 0.583 g) was added to a stirred suspension of $Bi(NO_3) \cdot 5 H_2O$ (1 mmol, 0.485 g) in 10 mL of butanone, producing a yellow-orange solution and a white precipitate of KNO₃. Ni(NO₃)₂·6H₂O(1 mmol, 0.290 g), was then added producing a dark green solution. The reaction mixture was stirred for overnight and then filtered to remove KNO₃, yielding a dark green solution of KNi[Bi(SCN)₆]. This solution was then left to slowly evaporate on a covered watchglass, yield dark red single crystals of KNi[Bi(SCN)₆].

Compounds **1**, **3** and **4** were synthesised using an analogous routes, where KSCN was substituted for the appropriate thiocyanate salt.

2 X-ray Diffraction Measurements

2.1 Single Crystal X-ray Diffraction

Single crystals were selected and mounted using perfluoropolyether oil on a polymer-tipped MiTeGen MicroMountTM and cooled rapidly to 120 K or 180 K in a stream of cold N₂ using an Oxford Cryosystems open flow cryostat.¹ Single crystal X-ray diffraction data were collected for compound **1** using a Nonius KappaCCD diffractometer, using graphite monochromated MoKa radiation ($\lambda = 0.7107$ Å) at 180 K. Data for compound **2** were collected on an Oxford Diffraction GV1000 (TitanS2 CCD area detector, mirror-monochromated Cu-Ka radiation source; $\lambda = 1.54184$ Å, ω scans) at 120 K. Data for compound **3** were collected on an Oxford Diffraction GV1000 (AtlasS2 CCD area detector, mirror-monochromated Cu-Ka radiation source; $\lambda = 1.54184$ Å, ω scans) at 120 K. Data for compound **4** were collected in Experiments Hutch 1 (EH1) of Beamline I19, at Diamond Light Source.² The data were collected at a wavelength of 0.6889 Å on a Fluid Film Devices 3-circle fixed-chi diffractometer using a Dectris Pilatus 2M detector. Data for Gua(SCN) were collected on an Oxford Diffraction SuperNova Duo diffractometer (Atlas CCD area detector, mirror-monochromated Cu-Ka radiation source; $\lambda = 1.54184$ Å, ω scans).

Cell parameters were refined from the observed positions of all strong reflections. Integration and absorption corrections were carried out for laboratory data using a Gaussian numerical method with beam profile correction (CrysAlisPro)³ and for synchrotron data using the xia2⁴ and DIALS software packages⁵. Structures were solved within Olex2⁶ by dual space iterative methods (SHELXT)⁷ and all non-hydrogen atoms refined by full-matrix least-squares on all unique F^2 values with anisotropic displacement parameters (SHELXL).⁸ Hydrogen atoms in compound **2** and in Gua(SCN) were located in the difference map and refined with constrained geometries and riding thermal parameters. H atoms could not be reliably located or positioned in compounds **3** and **4** due to structural disorder and so were omitted. Structures were checked with checkCIF (https://checkcif.iucr.org/). CCDC-2045274-8 contain the supplementary data for these compounds. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

2.2 Single Crystal Neutron Diffraction

Monochromatic single crystal diffraction data were collected on the four-circle D19 diffractometer at ILL (Grenoble, France) with Cu 331 monochromated radiation (take-off angle $2\theta_M = 69.9^\circ$), providing neutrons with a wavelength of 0.94558 Å, which is a good compromise between instrumental resolution, data completeness and the overlapping of neighbouring reflections. The sample was placed in a closed-circuit displex cooling device, which was operated following a ramp of 2 K min⁻¹. The measurement strategy consisted of several ω scans (25 at 20 K and 13 at 260 K) with steps of 0.07° at different χ and ϕ positions. Unit-cell determinations were performed using PFIND and DIRAX programs, and processing of the raw data was applied using RETREAT and RAFD19 programs.⁹⁻¹¹ Structures were refined within Olex2⁶ using SHELXL⁸. All atoms were refined by full-matrix least-squares on all unique F^2 values with anisotropic displacement parameters. CCDC-2045258-9 con-

tain the supplementary data for these compounds. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

	1 20N	1 120X	1 260N	2
Empirical formula	C6 H4 Bi1 N4	C6 H4 Bi1 N4 N1	C6 H4 Bi1 N4	C6 Bi1 K1 N6
	N1 S3	S3	N1 S3	Ni1 S6
Formula weight (Da)	634.21	634.21	634.21	655.27
Т (К)	20	120	260	180
λ (Å)	0.94558	1.54184	0.94558	0.71073
Radiation	Neutron	$Cu K \alpha$	Neutron	MoKlpha
Crystal system	Triclinic	Triclinic	Triclinic	Triclinic
Space group	$P\overline{1}$	$P\overline{1}$	$P\overline{1}$	$P\overline{1}$
a (Å)	8.44100(10)	8.4699(2)	8.4472(12)	8.5073(2)
b (Å)	8.68990(10)	8.6913(2)	8.7119(10)	8.5686(2)
c (Å)	11.8177(2)	11.9058(3)	11.9671(9)	11.9651(3)
α°	97.5740(10)	97.187(2)	97.041(6)	97.5730(10)
β °	92.1370(10)	91.149(2)	90.364(7)	89.7810(10)
γ°	91.8170(10)	91.610(2)	91.558(9)	90.9970(10)
V (Å ³)	858.10(2)	868.96(4)	873.67(17)	864.46(4)
Z	2	2	2	2
$ ho_{calc}$ (g cm $^{-3}$)	2.455	2.424	2.411	2.517
μ (mm ⁻ 1)	0.04734	27.765	0.04734	12.215
F(000)	592	592	592	608
Crystal size (mm)	2.9 imes2.5 imes	0.247 $ imes$ 0.241 $ imes$	2.9 imes2.5 imes	0.06 $ imes$ 0.05 $ imes$
	2.2	0.087	2.2	0.02
θ range (°)	4.585–60.791	3.743-73.681	4.552-60.723	1.717–27.508
Reflections	18745	15829	9536	7203
Measured				
Independent	9590	3468	6293	3926
Reflections				
Completeness / max θ (°)	0.848 / 60.791	0.988 / 73.681	0.548 / 60.723	0.992 / 27.508
Absorption correction	empirical	gaussian	empirical	multi-scan
Transmission max. / min.	0.9203/0.8824	0.591/0.101	0.9203/0.8824	1.0 / 0.83
Refinement Method	F^2	F^2	F^2	F^2
Data/	9590/ 0/ 232	3468 / 10 / 212	6293 / 0 / 233	7203 / 0 /196
restraints/parameters	9090/ 0/ 202	0400/10/212	0230707200	7203707130
Goodness-of-fit on	1.151	1.096	1.266	1.075
F^2				
Final $R(F)$ ($I > 2\sigma$)	0.0448	0.0228	0.0963	0.0568
$wR2(F^2)$ (all data)	0.1117	0.0652	0.3111	0.1452
Max diff. peak/hole	+1.227 /	+1.621 / -1.218	+2.564 /	+3.567/-3.225
(e^{-}/A^{3})	-1.752		-2.165	
CCDC code	2045258	2045274	2045259	2045276

Table 1: Single crystal experimental details for compounds ${\bf 1}$ and ${\bf 2}$

	3	4	Gua(SCN)
Empirical formula	C7 Bi1 N7 Ni1 S6	C0.92 Bi0.15 N1.25	C2 H6 N4 S
		Ni0.17 S0.86	
Formula weight (Da)	642.19	97.32	118.17
<i>T</i> (K)	120	100	120
λ (Å)	1.54184	0.6889	1.54184
Radiation	$Cu K \alpha$	Synchrotron X-ray	$Cu K \alpha$
Crystal system	Monoclinic	Cubic	Triclinic
Space group	$P1\frac{2}{n}1$	$Pn\overline{3}$	$P\overline{1}$
a (Å)	12.21600(10)	12.12528(2)	6.9352(6)
b (Å)	36.8375(4)	12.12528(2)	7.0096(5)
c (Å)	24.5263(3)	12.12528(2)	12.3675(7)
α°	90	90	90.894(5)
β °	90.2240(10)	90	104.311(7)
γ °	90	90	101.787(7)
V (Å ³)	11036.9(2)	1782.689(10)	568.89(7)
Z	24	24	4
$ ho_{calc}$ (g cm $^{-3}$)	2.319	2.176	1.38
μ mm ⁻¹	26.251	9.725	4.11
F(000)	7152	1084	248
Crystal size (mm)	0.065 $ imes$ 0.057 $ imes$	0.09 imes 0.06 imes 0.02	0.206 $ imes$ 0.115 $ imes$
, , , ,	0.022		0.047
θ range (°)	3.600-67.684	2.302-35.897	3.697-73.681
Reflections Measured	123648	36116	2392
Independent Reflections	21661	1524	2256
Completeness / max θ (°)	0.982 / 67.684	0.979 / 35.897	0.982 / 73.681
Absorption correction	gaussian	empirical	gaussian
Transmission max. / min.	1.0 /0.937	1.0 / 0.9719	1.00 / 0.854
Refinement Method	F^2	F^2	F^2
Data/	21661 / 0 / 1272	1524 / 0 / 45	2256 / 0 /127
restraints/parameters			
Goodness-of-fit on F^2	1.114	1.043	1.126
Final $R(F)$ ($I > 2\sigma$)	0.0422	0.0263	0.0898
$wR2(F^2)$ (all data)	0.0962	0.0866	0.2627
Max diff. peak/hole (e^-/A^3)	+1.510/-1.895	+0.619/-0.507	+0.905/-0.539
CCDC code	2045278	2045277	2045275

Table 2: Single crystal experimental details for compounds 3, 4 and Gua(SCN)

2.3 Powder X-ray Diffraction

A high-resolution synchrotron X-ray powder diffraction measurement of **3**, MeNH₃{Ni[Bi(SCN)₆]}, was carried out at beamline I11 at the Diamond Light Source (APS) using a wavelength of 0.82659 Å. The sample was loaded into a 0.5 mm diameter glass capillary. Rietveld refinement of the data was carried out using Topas Academic 6.^{12,13} Lattice parameters were allowed to refine freely, along with the crystallographic size and strain. Atomic coordinates and atomic displacement parameters were fixed to those determined from single-crystal diffraction. H-atoms were omitted. The superlattice reflections are weak because they are primarily due to the light atoms in the frameworks (MeNH⁺), NCS⁻) rather than the heavy metal atoms. Refinement statistics are included in Tbl. 3. Laboratory powder X-ray diffraction measurements of **2**, K{Ni[Bi(SCN)₆]}, and **4**, Gua₃{Ni₆[Bi(SCN)₆]₅}, were carried out using a Panalytical Empyrean diffractometer using CuK α 1 radiation $\lambda = 1.540562$ (**2**),

х

(a)					1	•			•	•			•	. hl	k0	(b)					•	•			•	•	•		•					hk1
									•		•							•			•	•	•		•	•	•		•	•				
		3.0				1																				12								
							-	-	-	-		-			-																			
		•									•						•	•	•	•	•	•	• •		• •	•	• •	•	•	•			•	
	nt.	1			•		+	•				•	*	11							•		•	-	•	•			1		•			
			1		-							E.C.	1		ALL .													1						
							.020		E Lar	101			•				•	•		•	•	•		-	• +	•	• •	1	• •				• :	•
	•	•		- Fr	t			•												•			-					-	•		•			and the second
								000																		1								
					1		-	1.000		200	1		•						•		• •	•	- +				.11	1	• •	•	-	•		
		•			•	٠				200	•									A.1.	1				•				: :					
					1		1		-														1	20	Ret		1							
and the second			1		1.	14		2-4		-1		1 X	19	·				•		•	• •	•			• •		• •		• •					
Part S		•			•	+	14	•			+		*	4					•	•		•	• •	-	•	•	• •	-	•		•			
		North						and the second			1			1 de la la																				
		Service.					Line Frank		• (1 11-			1992																					
			Re.		+	+	+	1	+		-	1										•							•					
	14												And Andrews								•				•		•		•	•	-		•	
		1000				and and		Con St			- Charles																							

Figure 2: Diffuse scattering in 4 with symmetry averaging applied ($m\bar{3}$)

Figure 3: Rietveld fit of synchrotron powder X-ray diffraction data of compound **3**. The calculated pattern is shown in light blue, the experimental data in dark blue and the difference in grey.

Figure 4: Rietveld fit of synchrotron powder X-ray diffraction data of compound **3**, zoomed in on low *Q* region. The calculated pattern is shown in light blue, the experimental data in dark blue and the difference in grey.

Figure 5: Rietveld fit of laboratory powder X-ray diffraction data of compound **2**. The calculated pattern is shown in light red, the experimental data in dark red and the difference in grey.

Figure 6: Rietveld fit of laboratory powder X-ray diffraction data of compound **4**. The calculated pattern is shown in light green, the experimental data in dark green and the difference in grey.

 $CuK\alpha$ radiation $\lambda = 1.5420$ (4), in flat plate geometry. Rietveld refinement of the data was carried out using Topas Academic 6.^{12,13} Lattice parameters were allowed to refine freely, along with the crystallographic size and strain. Atomic coordinates and atomic displacement parameters were fixed to those determined from single-crystal diffraction. H-atoms were omitted.

Table 3: Rietveld refinement fit metrics for **3** refined using the SCXD model against synchrotron powder X-ray diffraction data

R _{wp}	2.976
R _p	1.438
R _{Bragg}	2.080
S	9.648

3 Tolerance Factor Calculations

The tolerance factor for atomic frameworks is defined as $\tau = \frac{r_A + r_X}{\sqrt{2}(r_M + r_x)}$, where r_A is the radius of the A-site cation, r_M the radius of the M-site cation, r_x is the radius of the X-site anion. In molecular frameworks, an effective radius can be defined for (alkyl)ammonium cations, but the extended nature of anions means they are often better modelled by a cylinder, as proposed by Kieslich, Sun and Cheetham (KSC).¹⁴ Each anion therefore has two, a radius and a length:

 $\tau = \frac{r_A + r_X}{\sqrt{2}(r_M + \frac{l_X}{2})},$

where r_A is the effective radius of the A-site cation, r_M the radius of the M-site cation, r_x is the effective radius of the X-site anion, and l_x the effective length of the X-site anion. Using the library of existing NCS-perovskites we estimated the effective parameters of the NCS⁻ ligands to be $r_{NCS} = 2.00 \text{ Å}$, $l_{NCS} = 4.34 \text{ Å}$, comparable to previous estimates of spherical radii for NCS⁻.¹⁵ We used radii derived by Shannon for atomic cations, ¹⁶ and those derived by KSC for molecular cations.¹⁴ For mixed cation perovskites the mean of the two radii was used to calculate τ .

4 Density Functional Theory Calculations

We performed density functional theory (DFT) calculations to probe the structures and energetics of several compounds considered in this study.

For compounds **2** and **3**, cell optimizations were performed using the CP2K code (version 6.0), which uses a mixed Gaussian/plane-wave basis set.^{17,18} We employed double- ζ polarization quality Gaussian basis sets¹⁹ and a 400 Ry plane-wave cutoff for the auxiliary grid, in conjunction with the Goedecker-Teter-Hutter pseudopotentials^{20,21}. A convergence threshold of 1.0×10^{-6} Hartree was used for the self-consistent field cycle; cell optimizations (including cell parameters and atomic positions) were considered to be converged when the maximum force on atoms fell below 4.5×10^{-4} Hartree/Bohr. Spin-polarization was needed to describe open-shell Ni²⁺ cations, and we assume a high-spin ferromagnetic solution for all Ni²⁺ cations in our calculations. All DFT calculations were performed in the Γ -point approximation, using the PBE functional,²² with Grimme's D3 van der Waals correction (PBE+D3)²³.

For Cs₃{Fe[Bi(SCN)₆]}₄ a spin-polarized DFT+*U* method (with Grimme's D3 van der Waals correction²³) was employed to describe better the two different oxidation states of Fe in this compound (Fe²⁺ and Fe³⁺, using the Vienna Ab initio Simulation Package (VASP 5.4.4)²⁴. In our DFT+*U* calculations, we used U = 3.0 eV for the d-electrons of Fe²⁺ cations and U = 6.0 eV for the d-electrons of Fe³⁺ cations and a high-spin ferromagnetic solution was assumed for all Fe²⁺ and Fe³⁺ cations. We used a plane-wave basis set with a kinetic energy cutoff of 400 eV to expand the wave functions. The Perdew-Burke-Ernzerhof functional²² in combination with the projector augmented wave method^{25,26} were used to solve the Kohn-Sham equations. An energy convergence threshold of 10^{-4} eV was used for all total energy calculations. Structural optimizations, which included optimisation of cell parameters and atomic positions, were considered converged once all interatomic forces fell below 0.02 eV/Å. All DFT calculations were performed in the Γ -point approximation for sufficiently large cells.

Starting configurations for investigating the different orderings of K{Ni[Bi(SCN)₆]} were created by first generating a ($\sqrt{2} \times \sqrt{2} \times 1$) supercell of the experimental Fe[Bi(SCN₆)] structure, and then placing four K⁺ cations into the centre of the pseudocubic cages with each of the different orderings. The close similarity between the optimised structure with columnar [001] A-site order generated with this method and the experimental structure therefore shows the reliability of this approach. The anisotropy of the structures was assessed by calculating the strain relative to a hypothetical cubic cell, where $\alpha = \beta = \gamma = 90^{\circ}$ and $a_{cubic} = V^{\frac{1}{3}}$. The principal strains (eigenvalues of the strain matrix) are reported in Tbl. 4.²⁷

Model	a (Å)	b (Å)	c (Å)	α (°)	β (°)	γ (°)	V (Å ³)	a _{cubic} (Å)		strain	(%)
Expt.	12.3746	12.1038	12.0364	96.612	84.369	91.234	1782.08	12.1239	7.75	-0.01	7.77
Rocksa	alt12.2034	12.2035	12.1930	89.579	89.582	88.184	1814.83	12.1977	-1.56	-0.19	1.75
Layer	12.1448	12.2389	12.2354	90.465	89.405	87.855	1817.22	12.2031	-2.22	0.44	1.78
(100)											
Layer (010)	12.2408	12.1385	12.2388	89.418	90.469	87.801	1817.00	12.2026	-2.28	0.46	1.82
Layer (001)	12.2015	12.2018	12.3409	89.710	89.712	86.469	1833.79	12.2400	-3.48	0.76	2.73
Col ([100]	12.2118	12.0950	12.2594	89.835	89.768	86.343	1807.03	12.1802	-3.54	0.62	2.92
Col [010]	12.0944	12.2112	12.2596	89.765	89.839	86.339	1806.87	12.1799	-3.55	0.63	2.92
Col [100]	12.0988	12.2700	12.1455	94.831	84.598	89.948	1788.57	12.1386	-6.62	0.48	6.14

Table 4: DFT-optimised unit cell parameters for models of compound **2** with seven different K⁺ orderings, and the DFT-optimised experimental structure

Table 5: DFT derived energy for compound **3** for the SCXD derived model and models with inverted $MeNH_3^+$ cations

Config	. E _{total} (Hartree)	ΔE (kJ/mol per cell)	$n(\text{MeNH}_3^+)$	$\Delta E (\text{kJ/mol per MeNH}_3^+)$
Expt.	-8378.72661	0.0	-	0.0
MA-1	-8378.714436	32.0	2	16.0
MA-2	-8378.718684	20.8	2	10.4
MA-3	-8378.697917	75.3	4	18.8
MA-4	-8378.718645	20.9	2	10.5
MA-5	-8378.700874	67.6	4	16.9
MA-6	-8378.714088	32.9	2	16.4
MA-7	-8378.7094	45.2	4	11.3
MA-8	-8378.692082	90.7	4	22.7

Figure 7: DFT optimised models of orderings in 2 viewed along the c axis

M ₂ ⁺ (0;0;a)	Pban	Pnna
M ₂ ⁺ (0;a;a)	P42c	Ccca
R₅ ⁻ (0,0,a)	C2/c	C2/c
R₅ ⁻ (0,a,a)	P2 1/c	P2/c

T₂(a,0;0,0;0,0) T₂(a,a;0,0;0,0)

Figure 8: Symmetry analysis of the resulting spacegroup derived from the combination of conventional octahedral tilts with a complex conventional tilt with periodicity of four ($[\frac{1}{2}\frac{1}{2}\frac{1}{4}]T_2$ irrep) along a single axis in the presence of rocksalt M site order (R_2^+ irrep.). Structures with two tilts, which are not feasible in NCS-perovskites have a grey background. Noncentrosymmetric spacegroups are shown in bold.

Figure 9: Venn diagram showing the secondary order parameters deriving from the given modes in the $P\bar{4}2c$ structure. Note that Jahn-Teller distortions on alternating M-sites (R₃⁻ irrep) could stabilise the desired complex T₂ tilt in the presence of rocksalt M-site order.

References

- [1] J. Cosier et al., J. Appl. Crystallogr., 1986, 19, 105–107.
- [2] D. R. Allan et al., Crystals, 2017, 7, 336.
- [3] CrysAlisPro Software System, Version 1.171.40.45a, Rigaku Corporation, 2018.
- [4] G. Winter, J Appl Cryst, 2010, 43, 186–190.
- [5] G. Winter et al., Acta Cryst D, 2018, 74, 85-97.
- [6] O. V. Dolomanov et al., J. Appl. Crystallogr., 2009, 42, 339-341.
- [7] G. M. Sheldrick, Acta Crystallogr., 2015, A71, 3-8.
- [8] G. M. Sheldrick, Acta Crystallogr., 2015, C71, 3-8.
- [9] A. J. M. Duisenberg, J Appl Cryst, 1992, 25, 92-96.
- [10] G. J. McIntyre *et al.*, *Acta Cryst A*, 1988, **44**, 257–262.
 [11] C. Wilkinson *et al.*, *J Appl Cryst*, 1988, **21**, 471–478.
- [12] H. Rietveld, J. Appl. Crystallogr., 1969, 2, 65-71.

- [13] A. A. Coelho et al., Powder Diffr., 2011, 26, S22-S25.
- [14] G. Kieslich et al., Chem. Sci., 2015, 6, 3430-3433.
- [15] Y. Iwadate et al., J. Phys. Chem., 1982, 86, 5205-5208.
- [16] R. D. Shannon, Acta Cryst, 1976, A32, 751–767.
- [17] J. VandeVondele et al., Comput. Phys. Commun., 2005, 167, 103-128.
- [18] J. Hutter et al., WIREs Comput. Mol. Sci., 2014, 4, 15-25.
- [19] J. VandeVondele et al., J. Chem. Phys., 2007, 127, 114105.
- [20] S. Goedecker et al., Phys. Rev. B, 1996, 54, 1703-1710.
- [21] M. Krack, Theor Chem Acc, 2005, 114, 145-152.
- [22] J. P. Perdew et al., Phys. Rev. Lett., 1996, 77, 3865-3868.
- [23] S. Grimme et al., J. Chem. Phys., 2010, 132, 154104.
- [24] G. Kresse et al., Phys. Rev. B, 1996, 54, 11169–11186.
- [25] P. E. Blöchl, Phys. Rev. B, 1994, 50, 17953-17979.
- [26] D. Hobbs et al., Phys. Rev. B, 2000, 62, 11556–11570.
- [27] M. J. Cliffe et al., J. Appl. Crystallogr., 2012, 45, 1321–1329.