## **Electronic Supplementary Information**

### New insights into the disulfide bond formation enzymes in

### epidithiodiketopiperazine alkaloids

Huan Liu,  $\ddagger^a$  Jie Fan,  $\ddagger^a$  Peng Zhang, <br/>  $^a$  Youcai Hu,  $^d$  Xingzhong Liu, <br/>  $^a$  Shu-Ming Li $\ast^b$  and Wen-Bing Yin<br/>  $\ast^{a,c}$ 

<sup>‡</sup>These authors contributed equally to this work.

<sup>a.</sup> State Key Laboratory of Mycology and CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, P. R. China

<sup>b.</sup> Institut für Pharmazeutische Biologie und Biotechnologie, Fachbereich Pharmazie, Philipps-Universität Marburg, Robert-Koch-Straße 4, Marburg 35037, Germany

<sup>c.</sup> Savaid Medical School, University of Chinese Academy of Sciences, Beijing 100049, P.R. China

<sup>d.</sup> State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, P. R. China

‡ These authors contributed equally to this work.

| EXPERIMENTAL SECTION                                                                                                               |
|------------------------------------------------------------------------------------------------------------------------------------|
| Strains, media and growth conditions3                                                                                              |
| Computer-assisted sequence analysis                                                                                                |
| Genomic DNA isolation4                                                                                                             |
| RNA isolation and cDNA synthesis4                                                                                                  |
| Construction of deletion cassettes and genetic manipulation4                                                                       |
| Overproduction and purification of TdaR, AcIT and GliT in <i>E. coli</i>                                                           |
| Preparation of red-pretrichodermamide A and red-gliotoxin                                                                          |
| In vitro assays of TdaR, AcIT and GliT6                                                                                            |
| Large-scale fermentation and isolation of pretrichodermamide A (1)8                                                                |
| HPLC and LC-MS analysis8                                                                                                           |
| NMR analysis9                                                                                                                      |
| SUPPLEMENTARY TABLES10                                                                                                             |
| Table S1. Plasmids and strains used in this study 10                                                                               |
| Table S2. Primers used in this study                                                                                               |
| Table S3. <sup>1</sup> H and <sup>13</sup> C NMR data for pretrichodermamide A (1) 12                                              |
| Table S4. Gene prediction of tda cluster in T. hypoxylon by blast analysis                                                         |
| SUPPLEMENTARY FIGURES14                                                                                                            |
| Figure S1. HPLC analysis of the crude extract of <i>T. hypoxylon</i> WT strain                                                     |
| Figure S2. <sup>1</sup> H NMR spectrum of pretrichodermamide A (1) in DMSO-d <sub>6</sub> (500 MHz)15                              |
| Figure S3. <sup>13</sup> C NMR spectrum of pretrichodermamide A (1) in DMSO-d <sub>6</sub> (125 MHz)16                             |
| Figure S4. Sequence alignments of FAD-dependent oxidoreductases 17                                                                 |
| Figure S5. Phylogenetic analysis of TdaR homologs from fungal ETP clusters of clade IV in figure 3                                 |
| Figure S6. Reduction of pretrichodermamide A (1) (A) and gliotoxin (6) (B) by DTT19                                                |
| Figure S7. HPLC analysis of enzyme assays of TdaR, AclT and GliT with red-<br>pretrichodermamide A (4) in a DTT reducing mixture20 |
| Figure S8. HPLC analysis of enzyme assays of TdaR, AclT and GliT with red-gliotoxin (5) in a DTT reducing mixture21                |
| Figure S9. Preparation of red-pretrichodermamide A (4) and red-gliotoxin (5) on semi-<br>preparative HPLC                          |
| Figure S10. HPLC analysis of enzyme assays of TdaR, AclT and GliT with the pure                                                    |

#### Contents

| substrates red-pretrichodermamide A (4) | (A) and red-gliotoxin | (5) (B) | .23 |
|-----------------------------------------|-----------------------|---------|-----|
| REFERENCES                              | ••••••                | ••••••  | .24 |

#### **Experimental section**

#### Strains, media and growth conditions

The fungal strains used in this study are summarized in **Table S1**. *T. hypoxylon* was isolated from the stroma of *Hypoxylon anthochroum* in Thailand and deposited in the China General Microbiological Culture Collection Center (CGMCC 3.17906, Beijing, China).<sup>1</sup> The wild type (WT) strain was usually cultivated on potato dextrose (BD) agar (PDA) at 25°C. For detection of secondary metabolites (SMs), the WT strain was cultivated on rice medium. *E. coli* DH5 $\alpha$  and BL21(DE3) were grown in LB medium (1% NaCl, 1% tryptone, and 0.5% yeast extract) for standard DNA manipulation. 100 µg mL<sup>-1</sup> ampicillin or 50 µg mL<sup>-1</sup> kanamycin were supplemented for cultivation of recombinant *E. coli* strains.

#### **Computer-assisted sequence analysis**

Protein sequences used in this study were taken from the NCBI database (http://www.ncbi.nlm.nih.gov/protein) and compared with each other by using BLASTP program (http://blast.ncbi.nlm.nih.gov/). Cluster analysis of TdaR homologs carried using EFI Enzyme Similarity Tool was out by blast an (https://efi.igb.illinois.edu/efi-est) and Cytoscape (http://www.cytoscape.org/). We cut off the primary results by filtered for 80% maximum sequence identity for analysis. Multiple sequence alignments were carried out with the program ClustalW and visualized with ESPript 3.2 (http://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi) to

identify strictly conserved amino acid residues.<sup>2</sup>

#### **Genomic DNA isolation**

The mycelia of *T. hypoxylon* were collected in 1.5 mL tubes by using miracloth. Four steel beads (about 3 mm in diameter) and 400  $\mu$ L of LETS buffer (10 mM Tris-HCl pH 8.0, 20 mM EDTA pH 8.0, 0.5% SDS and 0.1 M LiCl) were added to the tubes. After vigorous mixing for 30 s, 300  $\mu$ L LETS buffer was added, and the solution was then treated with 700  $\mu$ L phenol: chloroform: isoamyl alcohol (25: 24: 1). The genomic DNA was precipitated by addition of 900  $\mu$ L absolute ethanol. After centrifugation at 13,000 rpm for 30 min and washing with 70% ethanol, the obtained DNA was dissolved in 50  $\mu$ L distillated H<sub>2</sub>O.

#### **RNA** isolation and cDNA synthesis

*T. hypoxylon* strain was cultivated on rice media containing 60 g rice and 90 mL water at 25°C for 7 d. *Aspergillus oryzae* and *Aspergillus fumigatus* were cultivated in LMM media (1.0% glucose, 50 mL L<sup>-1</sup> salt solution, 1 mL L<sup>-1</sup> trace element solution and 0.5% yeast extract) for 4 days. RNA extraction was performed by using TRIZOL reagent (Invitrogen, USA) according to the manufacturer's instruction. The FastQuant RT Kit (TIANGEN) was used for cDNA synthesis with Oligo-dT primers.

#### Construction of deletion cassettes and genetic manipulation

The oligonucleotide sequences for PCR amplification are given in **Table S2**. For creation of *tdaA* and *tdaR* deletion strains, approximately 1.6 kbp sequences located

upstream and downstream the target genes were amplified from genomic DNA of *T*. *hypoxylon* using primer pairs *tda*-QC-5F F/R and *tda*-QC-3F F/R (**Table S2**). These two fragments were subsequently inserted into pUCH2-8 containing a hygromycin (*hph*) resistance gene to construct the plasmid pYHL14 and pYHL39 using the Quick-Change method described previously.<sup>3</sup> Transformation was performed using PEG-mediated protoplast transformation described in a previous study.<sup>4,5</sup> Transformants (TYHL4 and TYHL23) were verified using three pairs of designed primers *tda*-SCR F/*hph*-SCR R, *hph*-SCR F/*tda*-SCR R as well as *tdaA*-RT F/R, and selected twice using hygromycin to obtain mitotic stability (**Table S2**).

#### Overproduction and purification of TdaR, AclT and GliT in E. coli

The coding DNA of TdaR was amplified using primer pairs tdaR QC F/tdaR QC R. The DNA fragment was inserted into pET28a(+)SUMO vector by Quick-Change to obtain the overexpression plasmid pYHL79, which was confirmed by sequencing. *E. coli* BL21(DE3) cells harboring the plasmid pYHL79 were cultivated in a 1000 mL Erlenmeyer flask containing 300 mL liquid LB medium supplementvropriate antibiotics and grown at 37°C to an absorption of 0.6 at 600 nm OD. Isopropyl thiogalactoside (IPTG) was added to a final concentration of 0.5 mM and the cells were cultivated for further 16 h at 28°C for induction. Pellets were collected by centrifuging, resuspended in lysis buffer (10 mM imidazole, 50 mM NaH<sub>2</sub>PO4 and 300 mM NaCl, pH 8.0) and lysed on ice by sonication for 20 minutes. The lysate was centrifuged at 15, 000 g for 60 min at 4°C to remove the cellular debris. One-step purification of the recombinant His<sub>6</sub>-tagged fusion protein by affinity chromatography with Ni-NTA agarose resin was carried out according to the manufacturer's instructions. In order to change the buffer, the purified protein was passed through a PD-10 column, which had been equilibrated with 50 mM Tris-HCl, pH 7.5 previously. The purified protein was eluted with the same buffer containing 20% glycerol before storage at -80°C. The purified enzyme was checked by SDS-PAGE (**Figure 4**). Bradford Protein Assay (Bio-Rad) was used to calculate protein concentration. The same method was used to purify the proteins of AclT and GliT.

#### Preparation of red-pretrichodermamide A and red-gliotoxin

To carry out enzyme assays of TdaR, AcIT and GliT, 1 mM of pretrichodermamide A (1) and gliotoxin (6) (Biopurify phytochemicals Ltd.), dissolved in degassed acetonitrile, were reduced using 1 mM of tris(2-carboxyethyl)phosphine hydrochloride (TCEP) as reducing agent in a total volume of 500 µL phosphate buffer (0.1 M, pH 6.5), respectively. After extracted with ethyl acetate, the products were purified on semi-preparative HPLC. Red-pretrichodermamide A (5) was eluted after 13.5 min (acetonitrile/H<sub>2</sub>O, 35:65). Red-gliotoxin (6) was eluted after 12 min (acetonitrile/H<sub>2</sub>O, 18:82).

#### In vitro assays of TdaR, AcIT and GliT

To determine the enzyme activity of TdaR, AcIT and GliT toward **4**, incubation of 0.1  $\mu$ M enzyme with 0.5 mM of pure substrate **4** was performed in phosphate buffer (pH 6.5, 0.1 M) at 37°C to a total volume of 100  $\mu$ L. The reaction was terminated after 30

min with trifluoroacetic acid (TFA, 2%), filtered and measured with HPLC (method A). As a negative control, the same experiment was carried out with heat-inactivated enzymes. **4** was eluted after 9.8 min, and **1** eluted after 10.4 min.

To determine the enzyme activity of TdaR, AcIT and GliT toward **5**, incubation of 0.1  $\mu$ M enzyme with 0.5 mM of pure substrate **5** was performed in phosphate buffer (pH 6.5, 0.1 M) at 37°C to a total volume of 100  $\mu$ L. The reaction was terminated after 30 min with trifluoroacetic acid (TFA, 2%), filtered and measured with HPLC (method A). As a negative control, the same experiment was carried out with heat-inactivated enzymes. **5** eluted after 5.8 min, and **6** eluted after 7.3 min.

Since **4** and **5** could be transformed to **1** and **6** spontaneously in the negative control, we further carried out the enzyme assays with a mixture containing **1** and DTT as substrate. In detail, 0.5 mM of **1** was incubated with and 1 mM of DTT as reducing agent in a total volume of 50  $\mu$ L phosphate buffer (0.1 M, pH 6.5). The reaction was completed after 30 min at 30°C to convert all **1** to **4** (mixture A). To determine the enzyme activity of TdaR, AcIT and GliT toward **4**, 0.1  $\mu$ M enzyme in phosphate buffer (pH 6.5, 0.1 M) was directly added into mixture A at 37°C to a total volume of 100  $\mu$ L. The reaction was terminated after 5, 10, 15, 20 and 30 min with trifluoroacetic acid (TFA, 2%), filtered and measured with HPLC (method A). Determination of TdaR activity without O<sub>2</sub> was carried out in a O<sub>2</sub>-free glove box, in which N<sub>2</sub> was circulated. **6** was reduced to **5** in a similar way to **1**. After incubation at 30°C after 30 min, **6** was completely transformed to **5** (mixture B). To determine the enzyme activity of TdaR, AcIT and GliT toward **5** (0.1 M, pH 6.5) was

directly added into mixture B at 37°C to a total volume of 100  $\mu$ L. The reaction was terminated after 5, 10, 15, 20 and 30 min with TFA (2%), filtered and measured with HPLC (method B).

#### Large-scale fermentation and isolation of pretrichodermamide A (1)

To isolate **1**, *T. hypoxylon* WT strain was cultivated in 50 x 500 mL flasks each containing 60 g rice and 90 mL H<sub>2</sub>O at 25°C for 14 days. The rice cultures were extracted with 5 L ethyl acetate and concentrated under reduced pressure to obtain a crude extract (8.9 g). The crude extract was applied to MCI gel reversed phase chromatography column and eluted with a stepwise gradient acetonitrile/H<sub>2</sub>O (5:95, 10:90, 30:70, 50:50, 70:30, 90:10 and 100:0), yielding 7 fractions. Fraction 2 was purified on a semi-preparative HPLC (acetonitrile/H<sub>2</sub>O, 20:80) yielding compound **1** (3 mg).

#### HPLC and LC-MS analysis

HPLC analysis was conducted with a Waters HPLC system (Waters e2695, Waters 2998, Photodiode Array Detector) using an ODS column (C18, 250\_4.6 mm, aters Pak, 5  $\mu$ m). Water with 0.1% ( $\nu/\nu$ ) formic acid (A) and acetonitrile (B) were used as solvents at the flow rate of 1 mL min<sup>-1</sup>. For analysis of the crude extract, substances were eluted with a linear gradient from 5–100% B in 30 min, washed with 100% ( $\nu/\nu$ ) solvent B for 5 min and equilibrated with 5% ( $\nu/\nu$ ) solvent B for 5 min. For analysis of the enzyme assays with **4**, substances were eluted with a linear gradient from 10–50% B in 20 min, washed with 100% ( $\nu/\nu$ ) solvent B for 5 min and equilibrated with 8 for 5 min and equilibrated with 100% ( $\nu/\nu$ ) solvent B for 5 min and equilibrated with 100% ( $\nu/\nu$ ) solvent B for 5 min and equilibrated with 100% ( $\nu/\nu$ ) solvent B for 5 min and equilibrated with 100% ( $\nu/\nu$ ) solvent B for 5 min and equilibrated with 100% ( $\nu/\nu$ ) solvent B for 5 min and equilibrated with 100% ( $\nu/\nu$ ) solvent B

for 5 min (method A). For analysis of enzyme assays with 5, substances were eluted with a linear gradient from 30–100% B in 30 min, washed with 100% ( $\nu/\nu$ ) solvent B for 5 min and equilibrated with 30% ( $\nu/\nu$ ) solvent B for 5 min (method B). UV absorptions at 254 nm were illustrated. Semi-preparative HPLC was performed on the same equipment with an ODS column (C18, 9.4 × 250 mm, aters Pak, 5 µm) column and the flow rate of 2.5 mL min<sup>-1</sup>.

The ethyl acetate extracts were analyzed on an Agilent HPLC 1260 series system equipped with a photo diode array detector and a Bruker microTOF QIII mass spectrometer by using a Multospher 120 RP-18 column (250x4mm, 5 μm, CS-Chromatograpie Service, Langerwehe, Germany). A linear gradient of 5–100% acetonitrile in water, both containing 0.1% formic acid, in 40 min and a flow rate at 0.25 mL min<sup>-1</sup> were used. The column was then washed with 100% acetonitrile containing 0.1% formic acid for 5 min and equilibrated with 5% acetonitrile in water for 5 min. The parameters of the mass spectrometer were set as following: electrospray positive ion mode for ionization, capillary voltage with 4.5 kV, 1.

#### NMR analysis

<sup>1</sup>H and <sup>13</sup>C NMR data were collected on a Bruker Avance-500 spectrometer using TMS as internal standard and chemical shifts were recorded as  $\delta$  values. HR-ESI-MS detected on an Agilent Accurate-Mass-QTOF LC-MS 6520 instrument. Spectra were processed with MestReNova 6.1.0 (Metrelab Research, S5 Santiago de Compostella, Spain). NMR spectra and data of the cyclodipeptides are provided as **Figure S2–S3**.

## Supplementary tables

| Table | <b>S1</b> . | Plasmids    | and | strains | used | in  | this | studv  |
|-------|-------------|-------------|-----|---------|------|-----|------|--------|
| 14010 | ~ • •       | 1 100111100 |     | Sum     |      | *** | UIID | Deckay |

| Plasmid/Strain                         | Description                                                               | Sources    |
|----------------------------------------|---------------------------------------------------------------------------|------------|
| Plasmids                               |                                                                           |            |
| pET28a(+) SUMO                         | vector with T7 promoter, 6xHis tag, T7 terminator and SUMO tag            | 6          |
| pUCH2-8                                | vector with hygromycin B (hph) resistance gene                            | 7          |
| pYHL79                                 | tdaR ORF insert to pET28a(+)SUMO                                          | This study |
| pYHL86                                 | gliT ORF insert to pET28a(+)SUMO                                          | This study |
| pYHL87                                 | aclT ORF insert to pET28a(+)SUMO                                          | This study |
| pYHL14                                 | tdaA deletion cassette containing the hph selectable marker               | This study |
| pYHL39                                 | <i>tdaR</i> deletion cassette containing the <i>hph</i> selectable marker | This study |
| Strains                                |                                                                           |            |
| E. coli DH5α                           | -                                                                         | 4          |
| E. coli BL21(DE3)                      | -                                                                         | 4          |
| Trichoderma hypoxylon<br>CGMCC 3.17906 | wild type (WT)                                                            | 1          |
| Aspergillus fumigatus Af293            | WT                                                                        | 8          |
| Aspergillus oryzae                     | WT                                                                        | 9          |
| TYHL4                                  | ΔtdaA::hph in Trichoderma hypoxylon                                       | This study |
| TYHL23                                 | ∆tdaR::hph in Trichoderma hypoxylon                                       | This study |

| Primer       | Sequences (5'-3')                                           |                                                                   |
|--------------|-------------------------------------------------------------|-------------------------------------------------------------------|
| tdaR-QC-F    | gaggetcacagagaacagattggtggtatgatatcgcgagetatgg              | Amplification of <i>tdaR</i> ORF from the                         |
| tdaR-QC-R    | gcgccgaataaatacctaagcttgtcttcatataaccctttacattctg           | cDNA of T. hypoxylon                                              |
| gliT-QC-F    | gaggetcacagagaacagattggtggtatgtcgatcggcaaactactc            | Amplification of <i>gliT</i> ORF from the                         |
| gliT-QC-R    | gcgccgaataaatacctaagcttgtctttagctcctgatcgagacgaaac          | cDNA of A. fumigatus                                              |
| aclT-QC-F    | acgatattattgaggctcacagagaacagattggtggtatggctgctccgctctttga  | Amplification of <i>aclT</i> ORF from the                         |
| aclT-QC-R    | gacgcactttgcgccgaataaatacctaagcttgtctttttcgccttctcatcaaacgc | cDNA of A. oryzae                                                 |
| tdaA-QC-5F-F | ctatagggcgaattggagctccaccgcggctcgtcagcagaatgtg              | Up flanks' amplification for tdaA                                 |
| tdaA-QC-5F-R | gatccactagttctagagcggccgccaccgtccaccacttgcttg               | deletion                                                          |
| tadA-QC-3F-F | gagccggaagcataaagtgtaaagcctggcctctatcactgtggcc              | Down flanks' amplification for <i>tdaA</i>                        |
| tdaA-QC-3F-R | gtgagttagctcactcattaggcacccgcactgcacgatatcagcc              | deletion                                                          |
| tdaA SCR F   | gtcggatgcatcggcgtag                                         | Upstream screening for $\Delta t daA$ transformant verification   |
| tdaA SCR R   | caaccgtgctcactgcag                                          | Downstream screening for $\Delta t daA$ transformant verification |
| tdaA-RT F    | gacacggtagtgttcggtg                                         |                                                                   |
| tdaA-RT R    | ggttgccatggtgtacag                                          | <i>DiadA</i> transformant target screening                        |
| tdaR-QC-5F F | ctatagggcgaattggagctccaccgcgtactgctcggcagtctgg              | Up flanks' amplification for <i>tdaR</i>                          |
| tdaR-QC-5F R | gatccactagttctagagcggccgccaccggagttggcatacttcctcg           | deletion                                                          |
| tdaR-QC-3F F | gagccggaagcataaagtgtaaagcctgctgcggaactcaatcatggc            | Down flanks' amplification for <i>tdaR</i>                        |
| tdaR-QC-3F R | gtgagttagctcactcattaggcacccgagatggtcgaggaggcttc             | deletion                                                          |
| tdaR-SCR F   | ccgcctgtagtgacatccag                                        | Upstream screening for $\Delta t daR$ transformant verification   |
| tdaR-SCR R   | gaggctaataactaccgtcgc                                       | Downstream screening for $\Delta t daR$ transformant verification |
| tdaR-RT F    | gcctagctcgccaactacac                                        | At J D transformer to react a second in                           |
| tdaR-RT R    | ggaaccacagtcacctacag                                        | Auar transformant target screening                                |

## Table S2. Primers used in this study

| $\begin{array}{c} OH \\ OH \\ OH \\ \overline{2} \\ \overline{2} \\ \overline{2} \\ \overline{2} \\ \overline{1} \\ \overline$ |                                |                                    |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | pretrichodermamide A (1) acqui | red in DMSO- <i>d</i> <sub>6</sub> |  |  |
| NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\delta_C$ , Type              | $\partial_H(J \text{ in Hz})$      |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 167.0, C                       | -                                  |  |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 70.8, C                        | -                                  |  |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30.7. CH <sub>2</sub>          | 2.09 (d, 16.0)                     |  |  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                | 1.96 (d, 16.0)                     |  |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 70.8, C                        | -                                  |  |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 74.1, CH                       | 4.17 (m)                           |  |  |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 129.8, CH                      | 5.42 (br d, 10.4)                  |  |  |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 128.7, CH                      | 5.48 (dt, 10.4, 2.4)               |  |  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 64.6, CH                       | 4.23 (m)                           |  |  |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 85.5, CH                       | 3.93 (d, 6.4)                      |  |  |
| 1′                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 164.7, C                       | -                                  |  |  |
| 2'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 58.9, CH                       | 4.41 (dd, 4.2, 3.0)                |  |  |
| 3'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44.8, CH                       | 4.49 (d, 2.8)                      |  |  |
| 4′                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 116.5, C                       | -                                  |  |  |
| 5'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 147.8, C                       | -                                  |  |  |
| 6'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 135.8, C                       | -                                  |  |  |
| 7′                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 153.0, C                       | -                                  |  |  |
| 8′                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 103.3, CH                      | 6.50 (d, 8.9)                      |  |  |
| 9′                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 123.0, CH                      | 7.44 (d, 8.8)                      |  |  |
| 4-OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                              | 5.09 (br s)                        |  |  |
| 5-OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                              | 5.26 (d, 5.1)                      |  |  |
| 8-OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                              | 5.22 (d, 6.7)                      |  |  |
| -NH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                              | 9.05 (d, 4.2)                      |  |  |
| 7'-OCH3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 55.7, CH <sub>3</sub>          | 3.67 (s)                           |  |  |
| 8'-OCH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 60.3, CH <sub>3</sub>          | 3.78 (s)                           |  |  |
| 9′-OH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                | 9.43 (s)                           |  |  |

Table S3. <sup>1</sup>H and <sup>13</sup>C NMR data for pretrichodermamide A (1)

| Trichoderma hypoxylon                   | Trichoderma virens<br>GVW | Aspergillus oryzae<br>RIB40 | Aspergillus fumigatus<br>Af293 | Putative function             |
|-----------------------------------------|---------------------------|-----------------------------|--------------------------------|-------------------------------|
| tdaA (T_hypo_11188)                     | Glv21 (78/88)             | BAE56606.1 (95/41)          | XP_750855.1 (89/31)            | Nonribosomal peptide synthase |
| <i>tdaA</i> <sub>0</sub> (T_hypo_11189) | Glv20 (82/75)             | _                           | _                              | Hypothetical protein          |
| tdaB (T_hypo_11190)                     | Glv19 (78/83)             | _                           | XP_750862.1 (99/40)            | Cytochrome P450 oxygenase     |
| tdaC (T_hypo_11191)                     | Glv18 (74/80)             | BAE56607.1 (83/40)          | _                              | Transporter                   |
| tdaD (T_hypo_11192)                     | Glv17 (95/98)             | _                           | _                              | Dehydrogenase                 |
| tdaE (T_hypo_11193)                     | Glv16 (82/89)             | BAE56600.1 (98/36)          | _                              | FAD-dependent oxidoreductase  |
| tdaF (T_hypo_11194)                     | Glv15 (82/90)             | BAE56597.1 (98/45)          | _                              | Aminotransferase              |
| tdaG (T_hypo_11195)                     | Glv14 (81/85)             | BAE56590.1 (83/40)          | _                              | Cytochrome P450 oxygenase     |
| tdaH (T_hypo_11196)                     | Glv13 (76/84)             | _                           | _                              | Methyltransferase             |
| tdal (T_hypo_11197)                     | Glv12 (85/90)             | BAE56591.1 (96/42)          | _                              | Cytochrome P450 oxygenase     |
| tdaJ (T_hypo_11198)                     | Glv11 (81/89)             | BAE56605.1 (99/59)          | XP_750854.1 (82/54)            | Dipeptidase                   |
| tdaK (T_hypo_11199)                     | _                         | BAE56599.1 (99/48)          | _                              | Methyltransferase             |
| tdaL (T_hypo_11200)                     | Glv10 (70/79)             | BAE56603.1 (88/62)          | XP_750858.1 (84/38)            | Glutathione-S-transferase     |
| tdaM (T_hypo_11201)                     | Glv9 (86/92)              | BAE56594.1 (98/39)          | XP_750860.1 (97/28)            | Transporter                   |
| tdaN (T_hypo_11202)                     | Glv8 (79/87)              | BAE56592.1 (78/27)          | XP_750852.1 (96/53)            | Regulator                     |
| tdaO (T_hypo_11203)                     | Glv7 (76/84)              | BAE56609.1 (100/48)         | _                              | Methyltransferase             |
| tdaP (T_hypo_11204)                     | Glv6 (83/88)              | BAE56598.1 (93/42)          | _                              | Cytochrome P450 oxygenase     |
| tdaQ (T_hypo_11205)                     | Glv5 (80/88)              | BAE56589.1 (90/35)          | _                              | Cytochrome P450 oxygenase     |
| tdaR (T_hypo_11206)                     | Glv4 (88/94)              | BAE56601.1 (96/42)          | XP_750863.1(98/38)             | FAD-dependent oxidoreductase  |
| tdaS (T_hypo_11207)                     | Glv3 (77/88)              | BAE56604.1 (96/42)          | XP_750856.1 (98/41)            | Cytochrome P450 oxygenase     |
| tdaT (T_hypo_11208)                     | Glv2 (84/92)              | BAE56596.1 (98/54)          | XP_750853.2 (94/37)            | Aminotransferase              |
| tdaU(T_hypo_11209)                      | Glv1 (88/94)              | BAE56602.1 (100/56)         | XP_750857.2 (96/46)            | Methyltransferase             |
| tdaV(T_hypo_11210)                      | _                         | _                           | XP_750859.1 (84/32)            | Hypothetical protein          |

# Table S4. Gene prediction of *tda* cluster in *T. hypoxylon* by blast analysis

## Supplementary figures



Figure S1. HPLC analysis of the crude extract of *T. hypoxylon* WT strain

UV absorptions at 210 nm are illustrated.



**Figure S2.** <sup>1</sup>H NMR spectrum of pretrichodermamide A (1) in DMSO-*d*<sub>6</sub> (500 MHz)



**Figure S3.** <sup>13</sup>C NMR spectrum of pretrichodermamide A (1) in DMSO- $d_6$  (125 MHz)



Figure S4. Sequence alignments of FAD-dependent oxidoreductases

TdaR (T\_hypo\_11206) from *T. hypoxylon* in this study shares conserved substrate binding site (His134, marked with \*), CXXC motif box (Cys135-X-X-Cys138) and FAD activation site (His<sub>139</sub>, marked with \*) by comparing to GliT (XP\_750863.1) from *A. fumigatus* and AclT (BAE56600.1) from *A. oryzae*. Protein sequence alignments were carried out by using the sequence alignment function of ClustalW and visualized with ESPript 3.0 (http://espript.ibcp.fr/ESPript/)<sup>2</sup>.



**Figure S5.** Phylogenetic analysis of TdaR homologs from fungal ETP clusters of clade IV in figure 3

The proteins from different fungi contain the same CLFC motif catalyzing  $\alpha$ ,  $\alpha$ - or  $\alpha$ ,  $\beta$ -disulfide formation. TdaR, AclT and GliT were naturally responsible for the biosynthesis of pretrichodermamide A (1), aspirochlorine and gliotoxin (6), respectively.



Figure S6. Reduction of pretrichodermamide A (1) (A) and gliotoxin (6) (B) by DTT



**Figure S7.** HPLC analysis of enzyme assays of TdaR, AclT and GliT with redpretrichodermamide A (4) in a DTT reducing mixture

λ = 254 nm

5 min

10 min

15 min

20 min

30 min

12

11

Enzyme reactions were terminated after 5, 10, 15, 20 and 30 min. UV absorptions at 254 nm are illustrated.



**Figure S8.** HPLC analysis of enzyme assays of TdaR, AclT and GliT with red-gliotoxin (5) in a DTT reducing mixture

Enzyme reactions were terminated after 5, 10, 15, 20 and 30 min. UV absorptions at 254 nm are illustrated.



**Figure S9.** Preparation of red-pretrichodermamide A (4) and red-gliotoxin (5) on semipreparative HPLC



**Figure S10.** HPLC analysis of enzyme assays of TdaR, AclT and GliT with the pure substrates red-pretrichodermamide A (4) (A) and red-gliotoxin (5) (B)

Enzyme reactions were terminated after 30 min. UV absorptions at 254 nm are illustrated.

#### References

- 1 J. Sun, Y. Pei, E. Li, W. Li, K. D. Hyde, W.-B. Yin and X. Liu, Sci. Rep., 2016, 6, 37369.
- 2 X. Robert and P. Gouet, Nucleic Acids Res., 2014, 42, W320-W324.
- 3 J. W. Bok and N. P. Keller, Methods in molecular biology (Clifton, N.J.), 2012, 944, 163-174.
- 4 H. Liu, Y.-H. Pu, J.-W. Ren, E.-W. Li, L.-X. Guo and W.-B. Yin, *Org. Biomol. Chem.*, 2020, **18**, 5344-5348
- 5 H. Liu, G. Wang, W. Li, X. Liu, E. Li and W. B. Yin, *Microbiology*, 2018, 164, 769-778.
- 6 Y. Bu, Y. Cui, Y. Peng, M. Hu, Y. Tian, Y. Tao and B. Wu, *Appl. Microbiol. Biotechnol.*, 2018, **102**, 3675-3685.
- 7 N. J. Alexander, T. M. Hohn and S. McCormick, Appl. Microbiol. Biotechnol., 1998, 64, 221-225.
- 8 W. B. Yin, J. A. Baccile, J. W. Bok, Y. Chen, N. P. Keller and F. C. Schroeder, J. Am. Chem. Soc., 2013, 135, 2064-2067.
- 9 Y. Tsunematsu, N. Maeda, M. Yokoyama, P. Chankhamjon, K. Watanabe, K. Scherlach and C. Hertweck, *Angew. Chem. Int. Ed.*, 2018, **57**, 14051-14054.