Electronic Supplementary Information

Benzylic C(sp³)–C(sp²) Cross-Coupling of Indoles Enabled by Oxidative Radical Generation and Nickel Catalysis

Weonjeong Kim, ‡ Jangwoo Koo‡ and Hong Geun Lee*

Department of Chemistry, College of Natural Sciences, Seoul National University, 1 Gwanak-ro, Seoul 08826, Republic of Korea

Table of Contents

1.	General Experimental Details	S2
2.	Substrate Preparations	S 3
3.	General Procedure for Arylation and Acylation	S9
4.	Characterization Data	S10
5.	Optimization of Reaction Conditions	S31
6.	Radical Trapping Experiments	S35
7.	Control Experiments to Exclude the HAT Process	S37
8.	Fluorescence Quenching Experiment (Stern-Volmer Relationship)	S39
9.	Electrochemical Characterizations	S40
10.	Kinetic Isotope Effect (KIE) Experiment	S43
11.	References	S45
12.	NMR Spectra	S46

1. General Experimental Details

Unless otherwise noted, all reactions were performed under inert conditions. Analytical TLC was performed on a Merck 60 F254 silica gel plates (0.25mm thickness), and visualized either using UV light (254 nm) or by staining with potassium permanganate and heating. Column chromatography was performed on Merck 60 silica gel (230–400 mesh). NMR spectroscopy experiments were conducted with a Varian 400 and 500 MHz or a Bruker 300 MHz system. Gas chromatography (GC) was carried out using a GC-2030 (Shimadzu) equipped with an Rxi[®]-5Sil MS column and a flame ionization detector (FID). Liquid chromatography-mass spectrometry (LC-MS) spectra were obtained on an Agilent 6120 Quadrupole LC/MS. NMR spectra were processed with ACD NMR Processor or MestReNova. Chemical shifts are reported in ppm and referenced to residual solvent peaks (CHCl₃ in CDCl₃: 7.26 ppm for 1 H, 77.16 ppm for ¹³C; CH₂Cl₂ in CD₂Cl₂: 5.32 ppm for ¹H, 53.84 ppm for ¹³C; (CH₃)₂SO in (CD₃)₂SO: 2.50 ppm for ¹H, 39.52 ppm for ¹³C). ¹⁹F NMR spectra were calibrated to an external standard of neat CFCl₃ (0.0 ppm for ¹⁹F). Coupling constants are reported in Hertz. Deuterated compounds were purchased from Cambridge Isotope Laboratories, Inc. All anhydrous solvents and chemicals were purchased from commercial sources (Sigma-Aldrich, Acros, Alfa Aesar, TCI, or Strem) and used without further purification. The iridum-based photocatalyst Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ was synthesized according to literature procedure.¹ 34 W Blue LED lamps purchased from Kessil (Kessil H150 Grow Light-Blue) were used for all the visible light photocatalytic reactions. Cyclic voltammetry was measured using a CH Instruments, CHI620E potentiostat using a three-electrode-cell assembly. High resolution mass spectroscopy (HRMS) analyses were performed by the ultrahigh resolution ESI Q-TOF mass spectrometer at the Organic Chemistry Research Center in Sogang University and the Mass Spectrometry Laboratory of National Instrumentation Center for Environmental Management (NICEM) in Seoul National University. UV-Vis spectra were recorded on an Agilent 8453 UV-Vis spectrophotometer with ChemStation software. Fluorescence spectra were recorded on a Photon Technology International (PTI) QM-400 spectrofluorometer with FelixGX software. The quenching constant (k_{α}) was determined following the Stern-Volmer relationship.²

2. Substrate Preparations

General procedure A³

To a stirred solution of NaH (454 mg, 11.3 mmol, 3.5 equiv, 60% suspension in mineral oil) in dry DMF (10 mL), 3-methylindole (425 mg, 3.2 mmol, 1.0 equiv) in DMF (5 mL) was added dropwise at 0°C. The mixture was allowed to warm up to room temperature and stirred for 30 min. After cooling down to 0 °C, R¹X (3.9 mmol, 1.2 equiv) was added dropwise. The reaction mixture was stirred at room temperature for another 6 h and then it was quenched by the addition of water and was extracted with ethyl acetate (10 mL, 3 times). The combined organic layer was washed with brine, dried over anhydrous Na₂SO₄, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel to give the corresponding compounds.

General procedure B4

1) Phosphorus oxychloride (0.56 mL, 6.0 mmol, 1.2 equiv) was added dropwise to DMF (20 mL) with ice-bath. The mixture was stirred for 5 min then added to a solution of *1H*-indole (5.0 mmol, 1.0 equiv) in DMF (10 mL) at 0 °C. The mixture was then to warm to room temperature and stirred for 30 min. The reaction became a heavy suspension that required vigorous stirring 5.0 M aqueous potassium hydroxide was added until pH>9 and the mixture was heated at 100 °C for 2 h. The resulting suspension was cooled down to 0 °C, the precipitate was filtered off, washed with water then dried under vacuum overnight and used in the next step without further purification.

2) To a suspension of LiAlH₄ (0.50 g, 13 mmol, 2.7 equiv) in THF (55 mL) at 0 °C under argon atmosphere was added previously synthesized 3-formyl-*1H*-indole (5.0 mmol, 1.0 equiv) over spatula. The suspension was then to warm to room temperature and stirred for 4 h. The reaction was cooled down at 0 °C, distillated water (0.5 mL) was added dropwise then aqueous solution of NaOH 10% (0.5

mL) then again H_2O (1.0 mL). The resulting slurry was strirred vigorously for 30 min, diluted with Et_2O and anhydrous MgSO₄ was added. The white precipitate was filtered on Celite then washed with Et_2O . The solvent was removed under vacuum and the product was used in the next step without further purification.

3) The crude 3-methyl-1*H*-indole was protected following *General procedure A*. Flash column chromatography purification led to indoles as the starting materials.

General procedure C⁵

1) The suspension of phenylhydrazine hydrochloride (0.87g, 6.0 mmol, 1.2 equiv) in AcOH (25 mL) was heated in 50 °C for 30 min, then corresponding ketone (5.0 mmol, 1.0 equiv) was added in one portion and the reaction mixture was refluxed for 3 h. After cooling to room temperature, AcOH was removed under vacuum and the residue was dissolved in ethyl acetate. The organic phase was washed with water and brine, dried over anhydrous Na₂SO₄, and concentrated in vacuum to give gray residue, which was purified by flash chromatography on silica gel to afford the S-1.

2) Synthesized indole, at the previous stage, was protected following *General procedure A*. Flash column chromatography purification led to indoles as the starting materials.

Characterization data of substrates

Previously reported N-protected indoles (1a,⁶ 1c,⁶ 1d,⁷ 1f,⁸ 1g,⁹ 1h,¹⁰ 1i,¹¹ 1j,¹² 1l,¹³ 1m,¹⁴ 1p,⁶ 1r,⁶ 1s,¹⁵ 1t,¹⁶ 1v,¹⁷ 1x,¹⁸ 1y,⁷ 1za,¹⁹ 1zb,²⁰ 1zc,¹⁷ 6aa²¹) were characterized by spectral comparison with literature data. New N-protected indoles (1e, 1k, 1n, 1o, 1q, 1u, 1w, 1z, D-1a) and aryl halides (2t) were characterized by ¹H NMR, ¹³C NMR, ¹⁹F NMR. The [Ni]-1,²² 3wt²³ was confirmed by ¹H NMR and ¹⁹F NMR spectral comparison with literature data, while new products were characterized by ¹H NMR, ¹³C NMR, ¹⁹F NMR, ¹⁹F NMR and HRMS-ESI.

1-(2-(1,3-dioxan-2-yl)ethyl)-3-methyl-1H-indole (1e)

Following the general procedure A, compound **1e** was prepared from 3-methylindole and 2-(2-bromoethyl)-1,3-dioxane as R¹X.

¹H NMR (500 MHz, CDCl₃) δ 7.80 (1H, d, *J* 7.8), 7.53 (1H, d, *J* 8.2), 7.42 (1H, t, *J* 7.6), 7.33 (1H, t, *J* 7.4), 7.01 (1H, s), 4.52 (1H, t, *J* 5.2), 4.35 (2H, t, *J* 6.9), 4.23 (2H, dd, *J* 11.8, 4.9), 3.76 (2H, t, *J* 12.1), 2.56 (3H, s), 2.30 – 2.15 (3H, m), 1.38 (1H, d, *J* 13.5) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 136.28, 128.64, 125.32, 121.32, 118.84, 118.45, 110.17, 109.17, 99.45, 66.57, 40.75, 35.67, 25.63, 9.55 ppm.

4-methoxy-1,3-dimethyl-1H-indole (1k)

Following the general procedure B, compound **1k** was prepared from 4-methoxyindole and iodomethane as R¹X.

¹H NMR (400 MHz, CDCl₃) δ 7.12 (1H, t, *J* 8.0), 6.89 (1H, d, *J* 8.2), 6.68 (1H, s), 6.48 (1H, d, *J* 7.7), 3.93 (3H, s), 3.69 (3H, s), 2.49 (3H, s) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 155.39, 138.93, 125.35, 122.35, 118.36, 110.75, 102.64, 98.95, 55.33, 32.77, 12.13 ppm.

tert-butyl (1,3-dimethyl-1H-indol-5-yl)carbamate (1n)

Compound **1n** was prepared following slightly modified literature procedures using 5-nitro-1*H*-indole.^{4,}

¹H NMR (500 MHz, CDCl₃) δ 7.64 (1H, s), 7.17 (1H, d, *J* 8.7), 7.09 (1H, d, *J* 8.2), 6.80 (1H, s), 6.50 (1H, s), 3.69 (3H, s), 2.29 (3H, s), 1.55 (9H, s) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 153.70, 134.24, 130.13, 128.93, 127.45, 115.18, 110.15, 109.88, 109.21, 79.97, 32.68, 28.60, 9.67 ppm.

1,3-dimethyl-1*H*-indole-5-carbonitrile (**1o**)

Compound **1o** was prepared following slightly modified literature procedures using 5-bromo-1,3dimethyl-1*H*-indole (**1p**).²⁵

¹H NMR (500 MHz, CDCl₃) δ 7.87 (1H, s), 7.40 (1H, dd, *J* 8.5, 1.2), 7.28 (1H, d, *J* 8.5), 6.93 (1H, s), 3.75 (3H, s), 2.31 (3H, s) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 138.45, 128.81, 128.51, 124.67, 124.36, 121.19, 111.50, 109.88, 101.44, 32.79, 9.36 ppm.

6-fluoro-1,3-dimethyl-1*H*-indole (1q)

Following the general procedure B, compound **1q** was prepared from 6-fluoroindole and iodomethane as R¹X.

¹H NMR (500 MHz, CDCl₃) δ 7.50 (1H, dd, *J* 8.6, 5.3), 6.98 (1H, dd, *J* 10.0, 2.2), 6.91 (1H, ddd, *J* 9.7, 8.7, 2.3), 6.83 – 6.79 (1H, m), 3.69 (3H, s), 2.35 (3H, s) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 160.13 (d, *J*_{C-F} 237.0), 137.14 (d, *J*_{C-F} 12.2), 126.89 (dd, *J*_{C-F} 3.5), 125.39, 119.77 (d, *J*_{C-F} 10.3), 110.52, 107.25 (d, *J*_{C-F} 24.6), 95.47 (d, *J*_{C-F} 26.1), 32.62, 9.60 ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ –121.59 ppm.

1,3-dimethyl-2-(pyridin-4-yl)-1*H*-indole (1u)

Following the general procedure C, compound **1u** was prepared from phenylhydrazine hydrochloride, 4-propionylpyridine, and iodomethane as R¹X.

¹H NMR (500 MHz, CDCl₃) δ 8.75 (2H, d, *J* 5.7), 7.65 (1H, d, *J* 7.9), 7.38 – 7.30 (4H, m), 7.20 (1H, t, *J* 7.3), 3.66 (3H, s), 2.36 (3H, s) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 149.85, 140.18, 138.00, 134.60, 128.36, 125.04, 122.90, 119.65, 119.35, 110.73, 109.57, 31.27, 9.49 ppm.

cyclopentyl (1,3-dimethyl-1H-indol-5-yl)carbamate (1w)

Compound **1w** was prepared following slightly modified literature procedures using 5-nitro-1*H*-indole.^{4,}

¹H NMR (500 MHz, CDCl₃) δ 7.67 (1H, s), 7.17 (1H, d, *J* 8.6), 7.11 (1H, d, *J* 7.9), 6.80 (1H, s), 6.60 (1H, s), 5.33 – 5.18 (1H, m), 3.69 (3H, s), 2.29 (3H, s), 1.96 – 1.87 (2H, m), 1.84 – 1.71 (4H, m), 1.68 – 1.58 (2H, m) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 154.40, 134.30, 129.87, 128.90, 127.49, 115.10, 110.14, 109.80, 109.22, 77.81, 32.95, 32.65, 23.82, 9.60 ppm.

tert-butyl ((1-benzyl-1*H*-indol-3-yl)methyl)carbamate (1z)

Compound **1z** was prepared following slightly modified literature procedures using Indole-3carboxaldehyde.²⁷⁻²⁸

¹H NMR (500 MHz, CDCl₃) δ 7.67 (1H, d, *J* 7.8), 7.33 – 7.25 (4H, m), 7.24 – 7.17 (1H, m), 7.17 – 7.09 (3H, m), 7.07 (1H, s), 5.28 (2H, s), 4.49 (2H, s), 1.47 (9H, s) ppm. ¹³C NMR (126 MHz, DMSO-d₆) δ 155.61, 138.31, 136.11, 128.47, 127.29, 127.22, 127.09, 126.99, 121.29, 119.15, 118.68, 113.13, 110.06, 77.46, 48.88, 35.19, 28.29 ppm.

1-methyl-3-(methyl-*d*₃)-1*H*-indole (**D-1a**)

Following the general procedure B, compound **D-1a** was prepared from indole, DMF-d₇ instead of DMF, LiAlD₄ instead of LiAlH₄, and iodomethane as R^1X .

¹H NMR (400 MHz, CDCl₃) δ 7.66 (1H, d, *J* 8.6), 7.33 (2H, dt, *J* 14.2, 7.7), 7.22 – 7.17 (1H, m), 6.88 (1H, s), 3.78 (3H, s) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 137.10, 128.78, 126.63, 121.50, 119.04, 118.59, 110.05, 109.09, 32.53, 8.88 (hept, *J* 19.4) ppm.

4-bromo-3-methoxy-N-(o-tolylsulfonyl)benzamide (2t)

Compound **2t** was prepared following slightly modified literature procedures using methyl 4-bromo-3hydroxybenzoate.^{23, 29}

¹H NMR (500 MHz, DMSO-d₆) δ 8.00 (1H, dd, *J* 7.9, 1.4), 7.63 (1H, d, *J* 8.2), 7.58 (1H, d, *J* 1.9), 7.49 – 7.41 (2H, m), 7.36 (1H, td, *J* 7.7, 1.4), 7.31 (1H, d, *J* 7.5), 3.88 (3H, s), 2.59 (3H, s) ppm. ¹³C NMR (126 MHz, DMSO-d₆) δ 165.92, 155.09, 140.23, 136.46, 135.40, 132.60, 131.99, 131.75, 129.56, 125.57, 121.89, 114.85, 111.90, 56.25, 19.75 ppm.

3. General Procedure for Arylation and Acylation

General procedure D: Arylation of indole

The reaction was set up in a nitrogen-filled glove box. To a 8 mL vial equipped with a PTFE-coated stirrer bar were added the corresponding indole **1** (0.30 mmol, 1.5 equiv), $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (2.2 mg, 0.0020 mmol, 1.0 mol%), NiCl₂·glyme (2.2 mg, 0.010 mmol, 5.0 mol%), 1,10-phenanthroline (2.7 mg, 0.015 mmol, 7.5 mol%), DBU (30 µL, 0.20 mmol, 1.0 equiv), LiCl (12.7 mg, 0.30 mmol, 1.5 equiv), aryl halide **2** (0.20 mmol, 1.0 equiv), and DMA (4.0 mL). The reaction vial was removed from the glove box, set to stir for 16 h under 34 W blue LED irradiation with fan cooling. At the end of the reaction, the resulting solution was transferred to a separatory funnel and partitioned between water (7 mL) and Et₂O (20 mL). The organic extract was washed with water (7 mL x 2) and brine (7 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. Flash column chromatography purification provided the arylated indoles as the desired products.

General procedure E: Acylation of indole

The reaction was set up in a nitrogen-filled glove box. To a 8 mL vial equipped with a PTFE-coated stirring bar were added the corresponding indole **1** (0.20 mmol, 1.0 equiv), $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (2.2 mg, 0.0020 mmol, 1.0 mol%), Ni(cod)₂ (2.8 mg, 0.010 mmol, 5.0 mol%), 4,4'-di-tert-butyl-2,2'-bipyridine (3.8 mg, 0.014 mmol, 7.0 mol%), K₂CO₃ (42 mg, 0.30 mmol, 1.5 equiv), acid anhydride **4** (0.24 mmol, 1.2 equiv), and DMF (4.0 mL). The reaction vial was removed from the glove box, set to stir for 16 h under 34 W blue LED irradiation with fan cooling. At the end of the reaction, the resulting solution was transferred to a separatory funnel and partitioned between water (7 mL) and Et₂O (20 mL). The

organic extract was washed with water (7 mL x 2) and brine (7 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. Flash column chromatography purification provided the acylated indoles as the desired products.

4. Characterization Data

Characterization data of arylation products

1-(4-((1-methyl-1*H*-indol-3-yl)methyl)phenyl)ethan-1-one (**3aa**)

¹H NMR (400 MHz, CDCl₃) δ 7.89 (2H, d, *J* 8.2), 7.49 (1H, d, *J* 7.9), 7.39 (2H, d, *J* 8.1), 7.32 (1H, d, *J* 8.2), 7.25 (1H, t, *J* 7.3), 7.10 (1H, t, *J* 7.2), 6.80 (1H, s), 4.18 (2H, s), 3.76 (3H, s), 2.59 (3H, s) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 197.97, 147.39, 137.29, 135.23, 128.93, 128.64, 127.75, 127.33, 121.86, 119.14, 119.06, 113.21, 109.37, 32.73, 31.70, 26.66 ppm. HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₈H₁₇NNaO: 286.1202, found: 286.1202.

1-(4-((1H-indol-3-yl)methyl)phenyl)ethan-1-one (3ba)

¹H NMR (500 MHz, DMSO-d₆) δ 10.89 (1H, s), 7.88 – 7.82 (2H, m), 7.37 (4H, m), 7.20 (1H, s), 7.04 (1H, t, *J* 7.5), 6.92 (1H, t, *J* 7.5), 4.11 (2H, s), 2.52 (3H, s) ppm. ¹³C NMR (126 MHz, DMSO-d₆) δ 197.44, 147.59, 136.40, 134.63, 128.62, 128.27, 126.85, 123.35, 121.00, 118.42, 118.35, 112.93, 111.43, 31.02, 26.58 ppm. HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₇H₁₅NNaO: 272.1046, found: 272.1046.

1-(4-((1-benzyl-1*H*-indol-3-yl)methyl)phenyl)ethan-1-one (**3ca**)

¹H NMR (400 MHz, CDCl₃) δ 7.91 – 7.83 (2H, m), 7.51 – 7.44 (1H, m), 7.36 (2H, d, *J* 8.0), 7.34 – 7.23 (4H, m), 7.17 (1H, ddd, *J* 8.3, 6.9, 1.2), 7.12 – 7.02 (3H, m), 6.87 (1H, s), 5.25 (2H, s), 4.16 (2H, s), 2.55 (3H, s)

ppm. ¹³C NMR (126 MHz, CDCl₃) δ 197.95, 147.23, 137.68, 136.96, 135.22, 128.91, 128.84, 128.64, 128.02, 127.67, 126.81, 126.73, 122.07, 119.33, 119.28, 113.85, 109.87, 49.99, 31.73, 26.64 ppm. HRMS (ESI): m/z [M+Na]⁺ calcd for C₂₄H₂₁NNaO: 362.1515, found: 362.1515.

1-(4-((1-butyl-1*H*-indol-3-yl)methyl)phenyl)ethan-1-one (**3da**)

¹H NMR (500 MHz, CDCl₃) δ 7.89 (2H, d, *J* 8.1), 7.48 (1H, d, *J* 7.9), 7.39 (2H, d, *J* 8.1), 7.35 (1H, d, *J* 8.2), 7.22 (1H, t, *J* 7.6), 7.08 (1H, t, *J* 7.4), 6.86 (1H, s), 4.18 (2H, s), 4.08 (2H, t, *J* 7.1), 2.59 (3H, s), 1.82 (2H, p, *J* 7.3), 1.36 (2H, h, *J* 7.5), 0.96 (3H, t, *J* 7.4) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 197.94, 147.46, 136.68, 135.29, 128.95, 128.64, 127.89, 126.32, 121.69, 119.23, 118.98, 113.10, 109.57, 46.09, 32.49, 31.77, 26.61, 20.32, 13.81 ppm. HRMS (ESI): m/z [M+Na]⁺ calcd for C₂₁H₂₃NNaO: 328.1672, found: 328.1672.

1-(4-((1-(2-(1,3-dioxan-2-yl)ethyl)-1*H*-indol-3-yl)methyl)phenyl)ethan-1-one (**3ea**) ¹H NMR (400 MHz, CDCl₃) δ 7.88 (2H, d, *J* 8.2), 7.47 (1H, d, *J* 7.9), 7.40 – 7.33 (3H, m), 7.21 (1H, t, *J* 7.6), 7.07 (1H, t, *J* 7.5), 6.81 (1H, s), 4.37 (1H, t, *J* 5.2), 4.21 (2H, t, *J* 6.9), 4.16 (2H, s), 4.09 (2H, dd, *J* 10.8, 5.0), 3.66 (2H, td, *J* 12.4, 2.3), 2.58 (3H, s), 2.07 (2H, q, *J* 7.0), 1.33 (1H, d, *J* 13.5), 1.26 (1H, s) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 198.02, 147.39, 136.64, 135.25, 128.98, 128.67, 127.82, 126.38, 121.88, 119.18, 119.09, 113.56, 109.66, 99.68, 66.95, 41.20, 35.72, 31.77, 26.71, 25.83 ppm. HRMS (ESI): m/z [M+Na]⁺ calcd for C₂₃H₂₅NNaO₃: 386.1727, found: 386.1727.

1-(4-((1-(tert-butyldimethylsilyl)-1H-indol-3-yl)methyl)phenyl)ethan-1-one (3fa)

¹H NMR (400 MHz, CDCl₃) δ 7.87 (2H, d, *J* 8.2), 7.50 (1H, d, *J* 8.3), 7.41 (1H, d, *J* 7.8), 7.36 (2H, d, *J* 8.3), 7.15 (1H, t, *J* 7.6), 7.06 (1H, t, *J* 7.4), 6.96 (1H, s), 4.16 (2H, s), 2.57 (3H, s), 0.93 (9H, s), 0.59 (6H, s) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 198.08, 147.27, 141.81, 135.24, 130.81, 129.35, 128.89, 128.65, 121.74, 119.65, 119.07, 116.33, 114.14, 31.83, 26.70, 26.46, 19.65, -3.78 ppm. HRMS (ESI): m/z [M+Na]⁺ calcd for C₂₃H₂₉NNaOSi: 386.1911, found: 386.1911.

1-(4-((1-(triisopropylsilyl)-1H-indol-3-yl)methyl)phenyl)ethan-1-one (3ga)

¹H NMR (400 MHz, CDCl₃) δ 7.89 (2H, d, *J* 8.1), 7.51 (1H, d, *J* 8.3), 7.43 (1H, d, *J* 7.7), 7.36 (2H, d, *J* 8.0), 7.16 (1H, t, *J* 7.5), 7.07 (1H, t, *J* 7.4), 7.03 (1H, s), 4.19 (2H, s), 2.58 (3H, s), 1.70 (3H, p, *J* 7.5), 1.16 (18H, d, *J* 7.5) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 198.08, 147.36, 141.65, 135.18, 130.85, 129.58, 128.86, 128.63, 121.71, 119.59, 118.93, 116.19, 114.15, 31.82, 26.69, 18.26, 12.93 ppm. HRMS (ESI): m/z [M+Na]⁺ calcd for C₂₆H₃₅NNaOSi: 428.2380, found: 428.2380.

1-(4-((1,4-dimethyl-1H-indol-3-yl)methyl)phenyl)ethan-1-one (3ja)

¹H NMR (500 MHz, CDCl₃) δ 7.89 (2H, d, *J* 8.2), 7.31 (2H, d, *J* 8.1), 7.19 – 7.10 (2H, m), 6.83 (1H, d, *J* 6.8), 6.68 (1H, s), 4.35 (2H, s), 3.73 (3H, s), 2.59 (3H, s), 2.53 (3H, s) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 197.99, 148.22, 137.90, 135.29, 131.09, 128.87, 128.65, 128.19, 126.50, 122.02, 120.76, 113.35, 107.30, 33.41, 32.82, 26.64, 20.19 ppm. HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₉H₁₉NNaO: 300.1359, found: 300.1359.

1-(4-((4-methoxy-1-methyl-1*H*-indol-3-yl)methyl)phenyl)ethan-1-one (**3ka**)

¹H NMR (500 MHz, CDCl₃) δ 7.88 (2H, d, *J* 8.2), 7.38 (2H, d, *J* 8.2), 7.13 (1H, t, *J* 8.0), 6.90 (1H, d, *J* 8.2), 6.58 (1H, s), 6.48 (1H, d, *J* 7.8), 4.32 (2H, s), 3.84 (3H, s), 3.69 (3H, s), 2.58 (3H, s) ppm. ¹³C NMR (126)

MHz, CDCl₃) δ 198.10, 155.01, 148.92, 138.98, 134.93, 129.06, 128.45, 126.03, 122.68, 117.71, 113.90, 102.72, 99.37, 55.14, 33.12, 32.90, 26.62 ppm. HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₉H₁₉NNaO₂: 316.1308, found: 316.1308.

1-(4-((1,5-dimethyl-1*H*-indol-3-yl)methyl)phenyl)ethan-1-one (**3la**)

¹H NMR (400 MHz, CDCl₃) δ 7.89 (2H, d, *J* 8.2), 7.38 (2H, d, *J* 8.2), 7.27 (1H, s), 7.21 (1H, d, *J* 8.3), 7.07 (1H, d, *J* 8.3), 6.75 (1H, s), 4.14 (2H, s), 3.72 (3H, s), 2.59 (3H, s), 2.44 (3H, s) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 198.02, 147.55, 135.74, 135.19, 128.91, 128.65, 128.30, 127.98, 127.44, 123.49, 118.73, 112.57, 109.10, 32.78, 31.65, 26.68, 21.59 ppm. HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₉H₁₉NNaO: 300.1359, found: 300.1359.

1-(4-((5-methoxy-1-methyl-1*H*-indol-3-yl)methyl)phenyl)ethan-1-one (**3ma**)

¹H NMR (500 MHz, CDCl₃) δ 7.89 (2H, d, *J* 8.1), 7.38 (2H, d, *J* 8.1), 7.20 (1H, d, *J* 8.5), 6.90 (2H, d, *J* 8.9), 6.75 (1H, s), 4.12 (2H, s), 3.81 (3H, s), 3.71 (3H, s), 2.58 (3H, s) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 198.02, 153.90, 147.36, 135.22, 132.71, 128.92, 128.66, 128.05, 127.98, 112.61, 111.89, 110.15, 101.14, 56.05, 32.91, 31.70, 26.67 ppm. HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₉H₁₉NNaO₂: 316.1308, found: 316.1308.

tert-butyl (3-(4-acetylbenzyl)-1-methyl-1H-indol-5-yl)carbamate (3na)

¹H NMR (500 MHz, CDCl₃) δ 7.87 (2H, d, J 8.1), 7.49 (1H, s), 7.35 (2H, d, J 8.1), 7.20 (2H, d, J 8.3), 6.72 (1H, s), 6.48 (1H, s), 4.10 (2H, s), 3.70 (3H, s), 2.57 (3H, s), 1.51 (9H, s) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 197.97, 153.65, 147.35, 135.26, 134.36, 130.57, 128.93, 128.66, 128.11, 127.92, 115.61, 113.12, 109.65,

109.52, 80.04, 32.86, 31.58, 28.54, 26.63 ppm. HRMS (ESI): m/z [M+Na]⁺ calcd for C₂₃H₂₆N₂NaO₃: 401.1836, found: 401.1836.

3-(4-acetylbenzyl)-1-methyl-1H-indole-5-carbonitrile (3oa)

¹H NMR (500 MHz, CDCl₃) δ 7.88 (2H, d, *J* 8.3), 7.77 (1H, s), 7.41 (1H, dd, *J* 8.5, 1.4), 7.33 (3H, d, *J* 8.4), 6.93 (1H, s), 4.12 (2H, s), 3.78 (3H, s), 2.57 (3H, s) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 197.75, 146.12, 138.79, 135.61, 129.56, 128.83, 128.81, 127.53, 124.81, 124.79, 114.61, 110.27, 102.18, 33.00, 31.37, 26.62 ppm. HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₉H₁₆N₂NaO: 311.1155, found: 311.1155.

1-(4-((5-bromo-1-methyl-1*H*-indol-3-yl)methyl)phenyl)ethan-1-one (**3pa**)

¹H NMR (400 MHz, CDCl₃) δ 7.88 (2H, d, *J* 8.2), 7.58 (1H, d, *J* 1.8), 7.34 (2H, d, *J* 8.1), 7.29 (1H, dd, *J* 8.7, 1.8), 7.16 (1H, d, *J* 8.7), 6.78 (1H, s), 4.09 (2H, s), 3.72 (3H, s), 2.58 (3H, s) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 198.03, 146.82, 135.95, 135.35, 129.40, 128.86, 128.76, 128.53, 124.70, 121.65, 112.88, 112.54, 110.93, 32.96, 31.46, 26.72 ppm. HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₈H₁₆BrNNaO: 364.0308, found: 364.0307.

1-(4-((6-fluoro-1-methyl-1*H*-indol-3-yl)methyl)phenyl)ethan-1-one (3qa)

¹H NMR (400 MHz, CDCl₃) δ 7.89 (2H, d, *J* 8.2), 7.36 (3H, d, *J* 7.9), 6.97 (1H, dd, *J* 9.9, 2.2), 6.84 (1H, td, *J* 9.3, 2.2), 6.78 (1H, s), 4.13 (2H, s), 3.68 (3H, s), 2.58 (3H, s) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 197.84, 160.11 (d, *J*_{C-F} 237.8), 147.02, 137.43, 137.38 (d, *J*_{C-F} 12.3), 128.86, 128.64, 127.60 (d, *J*_{C-F} 3.5), 124.31, 119.90 (d, *J*_{C-F} 10.3), 113.51, 107.73 (d, *J*_{C-F} 24.7), 95.75 (d, *J*_{C-F} 26.1), 32.74, 31.63, 26.56 ppm. ¹⁹F NMR

(376 MHz, CDCl₃) δ –120.79 ppm. HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₈H₁₆FNNaO: 304.1108, found: 304.1108.

1-(4-((7-chloro-1-methyl-1H-indol-3-yl)methyl)phenyl)ethan-1-one (3ra)

¹H NMR (400 MHz, CDCl₃) δ 7.88 (2H, d, *J* 8.0), 7.33 (3H, t, *J* 7.5), 7.14 (1H, d, *J* 7.6), 6.94 (1H, t, *J* 7.7), 6.73 (1H, s), 4.11 (2H, s), 4.09 (3H, s), 2.58 (3H, s) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 197.90, 146.81, 135.37, 132.57, 130.87, 130.12, 128.87, 128.69, 123.39, 119.90, 117.92, 117.14, 113.31, 36.55, 31.47, 26.65 ppm. HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₈H₁₆ClNNaO: 320.0813, found: 320.0813.

1-(4-((1-methyl-2-phenyl-1H-indol-3-yl)methyl)phenyl)ethan-1-one (3sa)

¹H NMR (500 MHz, CDCl₃) δ 7.86 (2H, d, J 8.1), 7.49 (4H, dt, J 20.5, 7.4), 7.41 (3H, t, J 6.7), 7.30 (3H, dd, J 13.9, 7.7), 7.14 (1H, t, J 7.4), 4.18 (2H, s), 3.69 (3H, s), 2.58 (3H, s) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 197.86, 147.95, 139.03, 137.48, 135.06, 131.77, 130.60, 128.59, 128.53, 128.49, 128.36, 127.78, 122.03, 119.63, 119.28, 110.64, 109.55, 31.00, 30.92, 26.54 ppm. HRMS (ESI): m/z [M+Na]⁺ calcd for C₂₄H₂₁NNaO: 362.1515, found: 362.1515.

1-(4-((2-(4-methoxyphenyl)-1-methyl-1*H*-indol-3-yl)methyl)phenyl)ethan-1-one (3ta)

¹H NMR (500 MHz, CDCl₃) δ 7.84 (2H, d, *J* 8.3), 7.43 (1H, d, *J* 7.9), 7.39 (1H, d, *J* 8.2), 7.28 (5H, dd, *J* 13.3, 8.5), 7.11 (1H, t, *J* 7.5), 7.02 (2H, d, *J* 8.7), 4.14 (2H, s), 3.89 (3H, s), 3.65 (3H, s), 2.57 (3H, s) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 197.92, 159.76, 148.10, 138.93, 137.33, 135.04, 131.81, 128.54, 128.51, 127.79, 123.93, 121.83, 119.55, 119.13, 114.11, 110.39, 109.49, 55.42, 30.98, 30.91, 26.57 ppm. HRMS (ESI): m/z [M+Na]⁺ calcd for C₂₅H₂₃NNaO₂: 392.1621, found: 392.1621.

1-(4-((1-methyl-2-(pyridin-4-yl)-1*H*-indol-3-yl)methyl)phenyl)ethan-1-one (**3ua**) **3ua** was prepared according to the general procedure D *with the following modifications*: The reaction was conducted for 23 h with 4CzIPN instead of Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆. ¹H NMR (400 MHz, CDCl₃) δ 8.72 (2H, s), 7.82 (2H, d, *J* 8.2), 7.42 (2H, dd, *J* 11.7, 8.1), 7.35 – 7.28 (3H, m), 7.22 (2H, d, *J* 8.1), 7.12 (1H, t, *J* 7.4), 4.16 (2H, s), 3.70 (3H, s), 2.55 (3H, s) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 197.89, 149.78, 147.15, 140.15, 138.16, 135.75, 135.30, 128.73, 128.39, 127.72, 125.14, 123.20, 120.22, 119.76, 112.48, 109.89, 31.41, 30.72, 26.66 ppm. HRMS (ESI): m/z [M+H]⁺ calcd C₂₃H₂₁N₂O: 341.1648, found: 341.1648.

1-(4-((1-methyl-1*H*-indol-2-yl)methyl)phenyl)ethan-1-one (**3va**)

¹H NMR (500 MHz, CDCl₃) δ 7.90 (2H, d, *J* 7.1), 7.57 (1H, d, *J* 7.8), 7.31 – 7.25 (3H, m), 7.19 (1H, t, *J* 7.5), 7.10 (1H, t, *J* 7.4), 6.29 (1H, s), 4.20 (2H, s), 3.55 (3H, s), 2.58 (3H, s) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 197.88, 144.22, 138.05, 137.81, 135.77, 128.92, 128.85, 127.79, 121.28, 120.24, 119.64, 109.05, 101.64, 33.56, 29.87, 26.72 ppm. HRMS (ESI): m/z [M+H]⁺ calcd C₁₈H₁₈NO: 264.1383, found: 264.1379.

ethyl 4-((1-methyl-1H-indol-3-yl)methyl)benzoate (3ab)

¹H NMR (400 MHz, CDCl₃) δ 7.98 (2H, d, J 8.2), 7.49 (1H, d, J 7.9), 7.36 (2H, d, J 8.1), 7.31 (1H, d, J 8.2), 7.23 (1H, d, J 7.6), 7.09 (1H, t, J 7.4), 6.78 (1H, s), 4.38 (2H, q, J 7.1), 4.17 (2H, s), 3.75 (3H, s), 1.40 (3H, t, J 7.1) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 166.81, 146.95, 137.30, 129.79, 128.77, 128.36, 127.78, 127.34,

121.84, 119.19, 119.04, 113.41, 109.35, 60.88, 32.76, 31.75, 14.48 ppm. HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₉H₁₉NNaO₂: 316.1308, found: 316.1308.

4-((1-methyl-1H-indol-3-yl)methyl)benzonitrile (3ac)

¹H NMR (300 MHz, CDCl₃) δ 7.59 (2H, d, *J* 8.0), 7.50 – 7.33 (4H, m), 7.30 (1H, d, *J* 6.9), 7.13 (1H, t, *J* 7.3), 6.86 (1H, s), 4.20 (2H, s), 3.80 (3H, s) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 147.22, 137.23, 132.18, 129.36, 127.52, 127.33, 121.90, 119.17, 119.11, 118.92, 112.38, 109.75, 109.37, 32.68, 31.70 ppm. HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₇H₁₄N₂Na: 269.1049, found: 269.1049.

1-methyl-3-(4-(trifluoromethyl)benzyl)-1*H*-indole (**3ad**)

3ad was prepared according to the general procedure D *with the following modifications*: The reaction was conducted with 4,4'-dimethoxy-2,2'-bipyridine instead of 1,10-phenanthroline.

¹H NMR (500 MHz, CDCl₃) δ 7.56 (2H, d, *J* 8.0), 7.51 (1H, dt, *J* 7.9, 0.9), 7.42 (2H, d, *J* 7.9), 7.35 (1H, dt, *J* 8.3, 0.8), 7.28 (1H, ddd, *J* 8.3, 7.0, 1.2), 7.13 (1H, ddd, *J* 8.0, 7.0, 1.0), 6.81 (1H, s), 4.19 (2H, s), 3.77 (3H, s) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 145.76, 137.34, 129.04, 128.34 (q, *J*_{C-F} 32.0), 127.76, 127.37, 125.38 (q, *J*_{C-F} 3.8), 124.55 (q, *J*_{C-F} 271.8), 121.93, 119.14, 119.13, 113.23, 109.42, 32.75, 31.52 ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ –62.24 ppm. HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₇H₁₄F₃NNa: 312.0971, found: 312.0971.

4-((1-methyl-1*H*-indol-3-yl)methyl)benzaldehyde (**3ae**)

3ae was prepared according to the general procedure D *with the following modifications*: The reaction was conducted with 4,4'-dimethoxy-2,2'-bipyridine instead of 1,10-phenanthroline.

¹H NMR (500 MHz, CDCl₃) δ 9.97 (1H, s), 7.79 (2H, d, *J* 8.0), 7.45 (3H, t, *J* 8.5), 7.32 (1H, d, *J* 8.2), 7.24 (1H, t, *J* 7.6), 7.08 (1H, t, *J* 7.4), 6.81 (1H, s), 4.19 (2H, s), 3.76 (3H, s) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 192.20, 149.09, 137.31, 134.70, 130.11, 129.43, 129.39, 127.74, 127.41, 121.91, 119.15, 112.94, 109.45, 32.84, 31.93 ppm. HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₇H₁₅NNaO: 272.1046, found: 272.1046.

3-(4-methoxybenzyl)-1-methyl-1*H*-indole (**3af**)

3af was prepared according to the general procedure D *with the following modifications*: The reaction was conducted with 4,4'-dimethoxy-2,2'-bipyridine instead of 1,10-phenanthroline.

¹H NMR (400 MHz, CDCl₃) δ 7.51 (1H, d, *J* 7.9), 7.29 (1H, d, *J* 8.2), 7.20 (3H, d, *J* 8.3), 7.07 (1H, t, *J* 7.9), 6.83 (2H, d, *J* 8.6), 6.74 (1H, s), 4.04 (2H, s), 3.78 (3H, s), 3.73 (3H, s) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 157.91, 137.31, 133.64, 129.70, 127.92, 127.14, 121.67, 119.34, 118.85, 114.89, 113.86, 109.25, 55.39, 32.72, 30.74 ppm. HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₇H₁₇NNaO: 274.1202, found: 274.1202.

1-methyl-3-(3-(trifluoromethyl)benzyl)-1H-indole (3ag)

3ag was prepared according to the general procedure D *with the following modifications*: The reaction was conducted with 4,4'-dimethoxy-2,2'-bipyridine instead of 1,10-phenanthroline.

¹H NMR (400 MHz, CDCl₃) δ 7.57 (1H, s), 7.47 (3H, dd, *J* 11.5, 8.0), 7.42 – 7.36 (1H, m), 7.32 (1H, d, *J* 8.2), 7.23 (1H, d, *J* 8.1), 7.09 (1H, t, *J* 7.4), 6.78 (1H, s), 4.16 (2H, s), 3.76 (3H, s) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 142.56, 137.41, 132.19, 130.78 (q, *J*_{C-F} 31.9), 128.87, 127.81, 127.35, 125.50 (q, *J*_{C-F} 3.9), 122.94 (q, *J*_{C-F} 3.8), 122.30 (q, *J*_{C-F} 272.2), 121.93, 119.15, 119.13, 113.39, 109.41, 32.75, 31.54 ppm. ¹⁹F NMR (376 MHz, CDCl₃) δ –62.48 ppm. HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₇H₁₄F₃NNa: 312.0971, found: 312.0971.

1-methyl-3-(3-methylbenzyl)-1H-indole (3ah)

3ah was prepared according to the general procedure D *with the following modifications*: The reaction was conducted with 4,4'-dimethoxy-2,2'-bipyridine instead of 1,10-phenanthroline.

¹H NMR (400 MHz, CDCl₃) δ 7.56 (1H, d, *J* 8.7), 7.31 (1H, d, *J* 8.2), 7.26 – 7.21 (1H, m), 7.18 (1H, d, *J* 7.4), 7.15 – 7.07 (3H, m), 7.03 (1H, d, *J* 7.4), 6.77 (1H, s), 4.08 (2H, s), 3.75 (3H, s), 2.33 (3H, s) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 141.49, 137.98, 137.28, 129.61, 128.34, 128.01, 127.23, 127.21, 126.72, 125.86, 121.66, 119.34, 118.87, 114.55, 109.24, 32.74, 31.56, 21.57 ppm. HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₇H₁₇NNa: 258.1253, found: 258.1253.

1-methyl-3-(2-methylbenzyl)-1H-indole (3ai)

3ai was prepared according to the general procedure D *with the following modifications*: The reaction was conducted with 4,4'-dimethoxy-2,2'-bipyridine instead of 1,10-phenanthroline.

¹H NMR (400 MHz, CDCl₃) δ 7.58 (1H, d, J 7.9), 7.31 (1H, d, J 8.2), 7.25 – 7.06 (6H, m), 6.57 (1H, s), 4.08 (2H, s), 3.71 (3H, s), 2.34 (3H, s) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 139.24, 137.14, 136.41, 130.09, 129.41, 127.89, 127.12, 127.10, 126.11, 125.90, 121.53, 119.08, 118.69, 113.58, 109.11, 32.59, 29.13, 19.49 ppm. HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₇H₁₇NNa: 258.1253, found: 258.1253.

1-methyl-3-(naphthalen-2-ylmethyl)-1H-indole (3aj)

3aj was prepared according to the general procedure D *with the following modifications*: The reaction was conducted with 4,4'-dimethoxy-2,2'-bipyridine instead of 1,10-phenanthroline.

¹H NMR (500 MHz, CDCl₃) δ 7.86 – 7.76 (4H, m), 7.59 (1H, d, *J* 7.9), 7.50 – 7.41 (3H, m), 7.33 (1H, d, *J* 8.2), 7.29 – 7.23 (1H, m), 7.11 (1H, t, *J* 7.8), 6.79 (1H, s), 4.30 (2H, s), 3.75 (3H, s) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 139.10, 137.38, 133.83, 132.26, 128.06, 128.01, 127.80, 127.75, 127.69, 127.43, 126.79, 125.95, 125.28, 121.75, 119.36, 118.98, 114.37, 109.29, 32.72, 31.90 ppm. HRMS (ESI): m/z [M+Na]⁺ calcd for C₂₀H₁₇NNa: 294.1253, found: 294.1253.

3-((3,4-dihydronaphthalen-1-yl)methyl)-1-methyl-1*H*-indole (**3ak**)

3ak was prepared according to the general procedure D *with the following modifications*: The reaction was conducted using alkenyl triflate with 4,4'-dimethoxy-2,2'-bipyridine instead of 1,10-phenanthroline. ¹H NMR (500 MHz, CDCl₃) δ 7.64 (1H, d, *J* 7.9), 7.35 – 7.32 (1H, m), 7.30 (1H, d, *J* 8.2), 7.23 (1H, t, *J* 7.6), 7.18 – 7.09 (4H, m), 6.80 (1H, s), 5.90 (1H, t, *J* 4.5), 3.90 (2H, s), 3.72 (3H, s), 2.80 (2H, t, *J* 8.0), 2.33 – 2.26 (2H, m) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 137.33, 136.82, 135.39, 135.22, 128.27, 127.58, 127.44, 127.43, 126.70, 126.45, 123.31, 121.58, 119.39, 118.80, 113.06, 109.24, 32.75, 28.86, 28.60, 23.41 ppm. HRMS (ESI): m/z [M+Na]⁺ calcd for C₂₀H₁₉NNa: 296.1410, found: 296.1410.

1-methyl-3-(pyridin-3-ylmethyl)-1*H*-indole (**3al**)

3al was prepared according to the general procedure D *with the following modifications*: The reaction was conducted with the reaction temperature reaching 53 °C (without fan-cooling).

¹H NMR (500 MHz, CDCl₃) δ 8.61 (1H, s), 8.46 (1H, d, J 3.9), 7.57 (1H, d, J 7.7), 7.48 (1H, d, J 7.9), 7.31 (1H, d, J 8.2), 7.26 – 7.18 (2H, m), 7.09 (1H, t, J 7.4), 6.78 (1H, s), 4.11 (2H, s), 3.75 (3H, s) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 149.94, 147.28, 137.36, 137.07, 136.50, 127.64, 127.33, 123.54, 121.97, 119.17, 119.06, 113.04, 109.42, 32.76, 28.89 ppm. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₅H₁₅N₂: 223.1230, found: 223.1230.

1-methyl-3-(pyrimidin-5-ylmethyl)-1H-indole (3am)

3am was prepared according to the general procedure D *with the following modifications*: The reaction was conducted with the reaction temperature reaching 53 °C (without fan-cooling).

¹H NMR (500 MHz, CDCl₃) δ 9.08 (1H, s), 8.66 (2H, s), 7.46 (1H, d, *J* 7.9), 7.32 (1H, d, *J* 8.2), 7.25 (1H, t, *J* 7.5), 7.10 (1H, t, *J* 7.4), 6.80 (1H, s), 4.09 (2H, s), 3.76 (3H, s) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 157.00,

156.85, 156.83, 137.38, 134.64, 127.33, 122.20, 119.42, 118.77, 111.66, 109.56, 32.81, 26.48 ppm. HRMS (ESI): m/z $[M+H]^+$ calcd for $C_{14}H_{14}N_3$: 224.1182, found: 224.1182.

4-((1-methyl-1*H*-indol-3-yl)methyl)isoquinoline (3an)

3an was prepared according to the general procedure D *with the following modifications*: The reaction was conducted with the reaction temperature reaching 53 °C (without fan-cooling).

¹H NMR (500 MHz, CDCl₃) δ 9.22 (1H, s), 8.53 (1H, s), 8.02 (2H, dd, *J* 19.5, 8.2), 7.70 (1H, d, *J* 7.9), 7.62 (2H, dt, *J* 25.6, 7.2), 7.35 – 7.25 (2H, m), 7.17 (1H, t, *J* 7.2), 6.52 (1H, s), 4.50 (2H, s), 3.64 (3H, s) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 151.62, 143.22, 137.11, 135.04, 130.32, 130.17, 128.58, 128.21, 127.60, 127.41, 126.95, 123.70, 121.83, 119.05, 118.94, 113.12, 109.33, 32.65, 26.24 ppm. HRMS (ESI): m/z [M+H]⁺ calcd for C₁₉H₁₇N₂: 273.1386, found: 273.1386.

tert-butyl 5-((1-methyl-1H-indol-3-yl)methyl)-1H-indole-1-carboxylate (3ao)

3ao was prepared according to the general procedure D *with the following modifications*: The reaction was conducted with 4,4'-dimethoxy-2,2'-bipyridine instead of 1,10-phenanthroline.

¹H NMR (500 MHz, CDCl₃) δ 8.04 (1H, s), 7.58 – 7.56 (1H, m), 7.54 (1H, d, *J* 7.9), 7.46 (1H, s), 7.32 – 7.25 (2H, m), 7.22 (1H, t, *J* 8.0), 7.07 (1H, t, *J* 7.8), 6.75 (1H, s), 6.49 (1H, d, *J* 3.7), 4.20 (2H, s), 3.73 (3H, s), 1.67 (9H, s) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 150.00, 137.36, 135.91, 130.94, 128.01, 127.29, 127.28, 126.08, 125.44, 121.67, 120.78, 119.41, 118.87, 115.10, 115.03, 109.23, 107.39, 83.61, 32.72, 31.54, 28.35 ppm. HRMS (ESI): m/z [M+Na]⁺ calcd for C₂₃H₂₄N₂NaO₂: 383.1730, found: 383.1730.

tert-butyl 4-(2-((1-methyl-1*H*-indol-3-yl)methyl)dibenzo[*b*,*f*][1,4]oxazepin-11-yl)piperazine-1carboxylate (**3ap**)

3ap was prepared according to the general procedure D *with the following modifications*: The reaction was conducted with NiCl₂·glyme (10.0 mol%), 4,4'-dimethoxy-2,2'-bipyridine (15.0 mol%), DMA (0.033 M) and corresponding aryl chloride instead of aryl bromide.

¹H NMR (500 MHz, CDCl₃) δ 7.41 (1H, d, *J* 6.9), 7.36 (1H, d, *J* 7.9), 7.32 (1H, d, *J* 8.2), 7.23 (1H, t, *J* 7.6), 7.19 – 7.09 (4H, m), 7.06 (2H, q, *J* 7.2, 6.7), 6.99 (1H, t, *J* 7.6), 6.82 (1H, s), 4.07 (2H, s), 3.76 (3H, s), 3.26 (8H, s), 1.50 (9H, s) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 160.62, 159.43, 154.87, 152.47, 140.37, 138.50, 137.43, 133.09, 129.38, 127.54, 127.29, 127.04, 125.58, 124.56, 123.00, 121.97, 121.06, 120.32, 119.12, 119.10, 113.38, 109.50, 80.01, 47.29, 43.47, 32.78, 30.83, 28.56 ppm. HRMS (ESI): m/z [M+H]⁺ calcd for C₃₂H₃₅N₄O₃: 523.2704, found: 524.2704.

tert-butyl 4-(2-((1-benzyl-5-methoxy-1*H*-indol-3-yl)methyl)dibenzo[*b*,*f*][1,4]oxazepin-11-yl)piperazine-1-carboxylate (**3xp**)

3xp was prepared according to the general procedure D *with the following modifications*: The reaction was conducted with NiCl₂·glyme (10.0 mol%), 4,4'-dimethoxy-2,2'-bipyridine (15.0 mol%), DMA (0.033 M) and corresponding aryl chloride instead of aryl bromide.

¹H NMR (500 MHz, CDCl₃) δ 7.43 (1H, d, *J* 8.1), 7.29 (3H, m), 7.23 – 7.05 (8H, m), 6.98 (1H, t, *J* 7.5), 6.91 (1H, s), 6.84 (1H, dd, *J* 8.8, 1.9), 6.73 (1H, s), 5.24 (2H, s), 4.06 (2H, s), 3.71 (3H, s), 3.25 (8H, s), 1.49 (9H, s) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 160.57, 159.47, 154.80, 154.06, 152.45, 138.23, 137.73, 133.03, 132.52, 129.37, 128.89, 128.20, 127.81, 127.42, 127.08, 126.87, 125.56, 124.50, 123.15, 121.05, 120.29, 113.38, 112.01, 110.75, 101.63, 79.94, 55.98, 50.27, 47.37, 43.17, 30.94, 28.57 ppm. HRMS (ESI): m/z [M+H]⁺ calcd for C₃₉H₄₁N₄O₄: 629.3122, found: 629.3122.

isopropyl 2-methyl-2-(4-(4-((1-methyl-1*H*-indol-3-yl)methyl)benzoyl)phenoxy)propanoate (**3aq**) **3aq** was prepared according to the general procedure D with the following modifications: The reaction was conducted with NiCl₂·glyme (10.0 mol%), 4,4'-dimethoxy-2,2'-bipyridine (15.0 mol%), DMA (0.033 M) and corresponding aryl chloride instead of aryl bromide.

¹H NMR (400 MHz, CDCl₃) δ 7.77 (2H, d, J 8.2), 7.70 (2H, d, J 7.5), 7.52 (1H, d, J 7.7), 7.39 (2H, d, J 7.5), 7.32 (1H, d, J 8.0), 7.27 – 7.21 (1H, m), 7.10 (1H, t, J 7.1), 6.87 (2H, d, J 8.2), 6.82 (1H, s), 5.13 – 5.04 (1H, m), 4.19 (2H, s), 3.76 (3H, s), 1.67 (6H, s), 1.21 (6H, d, J 6.0) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 195.44, 173.30, 159.47, 146.23, 137.28, 135.91, 132.07, 130.98, 130.18, 128.58, 127.79, 127.37, 121.82, 119.19, 119.03, 117.23, 113.37, 109.36, 79.44, 69.37, 32.73, 31.67, 25.48, 21.62 ppm. HRMS (ESI): m/z [M+Na]⁺ calcd for C₃₀H₃₁NNaO₄: 492.2145, found: 492.2145.

ethyl 4-(8-((1-methyl-1*H*-indol-3-yl)methyl)-5,6-dihydro-11*H*-benzo[5,6]cyclohepta[1,2-*b*]pyridin-11ylidene)piperidine-1-carboxylate (**3ar**)

3ar was prepared according to the general procedure D with the following modifications: The reaction was conducted with NiCl₂·glyme (10.0 mol%), 4,4'-dimethoxy-2,2'-bipyridine (15.0 mol%), DMA (0.033 M) and corresponding aryl chloride instead of aryl bromide.

¹H NMR (500 MHz, CDCl₃) δ 8.39 (1H, dd, J 4.8, 1.6), 7.53 (1H, dt, J 7.9, 0.9), 7.44 (1H, d, J 7.5), 7.28 (1H, dt, J 8.2, 0.8), 7.21 (1H, ddd, J 8.1, 7.1, 1.0), 7.14 – 7.03 (5H, m), 6.78 (1H, s), 4.13 (2H, q, J 7.5), 4.04 (2H, s), 3.82 (2H, s), 3.73 (3H, s), 3.43 – 3.26 (2H, m), 3.20 – 3.06 (2H, m), 2.88 – 2.72 (2H, m), 2.53 – 2.22 (4H, m), 1.25 (3H, t, J 7.2) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 157.76, 155.64, 146.18, 140.87, 137.80, 137.48, 137.24, 136.93, 136.56, 134.95, 134.14, 129.51, 129.41, 127.98, 127.23, 126.45, 122.23, 121.68, 119.28, 118.88, 114.10, 109.26, 61.38, 45.01, 44.92, 32.73, 32.00, 31.83, 31.18, 30.84, 30.71, 14.81 ppm. HRMS (ESI): m/z [M+H]⁺ calcd for C₃₂H₃₄N₃O₂: 492.2646, found: 492.2646.

2-(*tert*-butylamino)-1-(3-((1-methyl-1*H*-indol-3-yl)methyl)phenyl)propan-1-one (**3as**)

3as was prepared according to the general procedure D with the following modifications: The reaction was conducted with NiCl₂·glyme (10.0 mol%), 4,4'-dimethoxy-2,2'-bipyridine (15.0 mol%), DMA (0.033 M) and corresponding aryl chloride instead of aryl bromide.

¹H NMR (500 MHz, CDCl₃) δ 7.95 (1H, s), 7.82 (1H, d, J 7.7), 7.52 – 7.48 (2H, m), 7.39 (1H, t, J 7.7), 7.30 (1H, d, J 8.2), 7.25 – 7.21 (1H, m), 7.08 (1H, ddd, J 7.9, 7.1, 0.9), 6.79 (1H, d, J 1.0), 4.33 (1H, q, J 7.1), 4.18 (2H, s), 3.75 (3H, s), 2.75 (1H, d, J 6.9), 1.24 (3H, d, J 7.1), 1.04 (9H, s) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 205.29, 142.43, 137.36, 135.25, 133.80, 128.88, 128.69, 127.78, 127.30, 126.12, 121.87, 119.15, 119.06, 113.60, 109.38, 52.06, 50.89, 32.74, 31.58, 29.88, 22.85 ppm. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₃H₂₉N₂O: 349.2274, found: 349.2274.

cyclopentyl (3-(2-methoxy-4-((*o*-tolylsulfonyl)carbamoyl)benzyl)-1-methyl-1*H*-indol-5-yl)carbamate (**3wt**)

3wt was prepared according to the general procedure D *with the following modifications*: The reaction was conducted with NiCl₂·glyme (10.0 mol%), 1,10-phenanthroline (15.0 mol%) and DMA (0.033 M). ¹H NMR (500 MHz, CDCl₃) δ 9.12 (1H, s), 8.25 (1H, d, *J* 7.8), 7.55 – 7.46 (2H, m), 7.40 (1H, t, *J* 7.6), 7.33 – 7.27 (2H, m), 7.17 (2H, dd, *J* 12.7, 8.5), 7.10 (2H, t, *J* 10.0), 6.77 (1H, s), 6.52 (1H, s), 5.24 – 5.16 (1H, m), 4.03 (2H, s), 3.84 (3H, s), 3.70 (3H, s), 2.68 (3H, s), 1.86 (2H, s), 1.75 (4H, m), 1.60 (2H, s) ppm.

cyclopentyl (1-methyl-3-(pyrimidin-5-ylmethyl)-1H-indol-5-yl)carbamate (3wm)

3wm was prepared according to the general procedure D with the following modifications: The reaction was conducted with NiCl₂·glyme (10.0 mol%), 1,10-phenanthroline (15.0 mol%) and DMA (0.033 M) and the reaction temperature reaching 53 °C (without fan-cooling).

¹H NMR (500 MHz, CDCl₃) δ 9.06 (1H, s), 8.64 (2H, s), 7.59 (1H, s), 7.21 (1H, d, *J* 8.6), 7.14 (1H, d, *J* 7.1), 6.75 (1H, s), 6.68 (1H, s), 5.19 (1H, s), 4.03 (2H, s), 3.71 (3H, s), 1.92 – 1.83 (2H, m), 1.75 (4H, m), 1.65 – 1.54 (2H, m) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 156.98, 156.78, 154.26, 134.62, 134.42, 130.72, 128.16, 127.54, 115.71, 111.55, 109.79, 109.26, 77.94, 32.94, 26.34, 23.80 ppm. HRMS (ESI): m/z [M+Na]⁺ calcd for C₂₀H₂₂N₄NaO₂: 373.1635, found: 373.1635.

cyclopentyl (3-(isoquinolin-4-ylmethyl)-1-methyl-1*H*-indol-5-yl)carbamate (3wn)

3wn was prepared according to the general procedure D with the following modifications: The reaction was conducted with NiCl₂·glyme (10.0 mol%), 1,10-phenanthroline (15.0 mol%) and DMA (0.033 M) and the reaction temperature reaching 53 °C (without fan-cooling).

¹H NMR (400 MHz, CDCl₃) δ 9.19 (1H, s), 8.42 (1H, s), 8.02 (2H, dd, *J* 7.9, 3.6), 7.75 (1H, s), 7.68 (1H, t, *J* 7.6), 7.61 (1H, t, *J* 7.4), 7.22 – 7.13 (2H, m), 6.64 (1H, s), 6.49 (1H, s), 5.27 – 5.17 (1H, m), 4.44 (2H, s), 3.62 (3H, s), 1.95 – 1.83 (2H, m), 1.83 – 1.67 (4H, m), 1.67 – 1.53 (2H, m) ppm. ¹³C NMR (101 MHz, CDCl₃) δ 154.35, 150.92, 141.90, 135.40, 134.30, 131.03, 130.90, 130.45, 128.53, 128.41, 128.39, 127.76, 127.40, 123.82, 115.48, 112.63, 109.66, 109.38, 77.90, 32.96, 32.89, 26.21, 23.82 ppm. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₅H₂₆N₃O₂: 400.2020, found: 400.2020.

Characterization data of acylation products

1-(1-benzyl-1*H*-indol-3-yl)propan-2-one (**5ca**)

5ca was prepared according to the general procedure E with the following modifications: The reaction was conducted in the absence of K_2CO_3 .

¹H NMR (500 MHz, CDCl₃) δ 7.54 (1H, d, J 7.9), 7.31 – 7.22 (4H, m), 7.21 – 7.15 (1H, m), 7.15 – 7.08 (3H, m), 7.07 (1H, s), 5.29 (2H, s), 3.80 (2H, s), 2.16 (3H, s) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 207.43, 137.50,

136.77, 128.92, 128.10, 127.80, 127.32, 126.94, 122.22, 119.71, 119.05, 109.97, 108.09, 50.15, 40.92, 29.01 ppm. HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₈H₁₇NNaO: 286.1202, found: 286.1202.

1-(1-benzyl-1*H*-indol-3-yl)butan-2-one (5cb)

¹H NMR (500 MHz, CDCl₃) δ 7.56 (1H, d, *J* 7.8), 7.33 – 7.22 (4H, m), 7.18 (1H, t, *J* 7.2), 7.16 – 7.09 (3H, m), 7.07 (1H, s), 5.28 (2H, s), 3.80 (2H, s), 2.51 (2H, q, *J* 7.3), 1.01 (3H, t, *J* 7.3) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 207.43, 137.50, 136.77, 128.92, 127.80, 127.32, 126.94, 122.22, 119.71, 119.05, 109.97, 108.09, 50.15, 40.92, 29.01 ppm. HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₉H₁₉NNaO: 300.1359, found: 300.1359.

1-(1-benzyl-1*H*-indol-3-yl)-3-methylbutan-2-one (5cc)

¹H NMR (500 MHz, CDCl₃) δ 7.57 (1H, d, *J* 7.9), 7.34 – 7.24 (4H, m), 7.20 (1H, t, *J* 7.6), 7.14 (3H, dd, *J* 11.3, 7.3), 7.12 (1H, s), 5.31 (2H, s), 3.90 (2H, s), 2.93 – 2.68 (1H, m), 1.13 (6H, d, *J* 6.9) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 212.63, 137.61, 136.71, 128.87, 128.28, 127.73, 127.36, 126.93, 122.09, 119.57, 119.01, 109.90, 108.06, 50.13, 39.66, 37.67, 18.69 ppm. HRMS (ESI): m/z [M+Na]⁺ calcd for C₂₀H₂₁NNaO: 314.1515, found: 314.1515.

1-(1-benzyl-1*H*-indol-3-yl)heptan-2-one (5cd)

¹H NMR (500 MHz, CDCl₃) δ 7.57 (1H, d, J 7.5), 7.33 – 7.23 (4H, m), 7.22 – 7.16 (1H, m), 7.16 – 7.09 (3H, m), 7.08 (1H, s), 5.29 (2H, s), 3.81 (2H, s), 2.48 (2H, t, J 7.4), 1.62 – 1.50 (2H, m), 1.29 – 1.14 (4H, m), 0.85 (3H, t, J 7.0) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 209.49, 137.55, 136.72, 128.86, 128.18, 127.73, 127.28, 126.90, 122.12, 119.61, 119.06, 109.90, 108.14, 50.09, 41.52, 39.99, 31.43, 23.69, 22.52, 14.00 ppm. HRMS (ESI): m/z [M+Na]⁺ calcd for C₂₂H₂₅NNaO: 342.1828, found: 342.1828.

2-(1-benzyl-1*H*-indol-3-yl)-1-phenylethan-1-one (5ce)

¹H NMR (500 MHz, CDCl₃) δ 8.09 – 8.02 (2H, m), 7.67 – 7.62 (1H, m), 7.56 – 7.49 (1H, m), 7.43 (2H, t, J 7.7), 7.28 – 7.22 (4H, m), 7.20 – 7.12 (2H, m), 7.08 (1H, s), 7.06 (2H, dd, J 7.9, 1.5), 5.24 (2H, s), 4.41 (2H, s) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 197.91, 137.57, 136.78, 136.66, 133.05, 128.81, 128.69, 128.65, 128.17, 127.65, 127.44, 126.84, 122.09, 119.58, 119.11, 109.91, 108.17, 50.07, 35.70 ppm. HRMS (ESI): m/z [M+Na]⁺ calcd for C₂₃H₁₉NNaO: 348.1359, found: 348.1359.

2-(1-benzyl-1*H*-indol-3-yl)-1-(naphthalen-2-yl)ethan-1-one (5cf)

¹H NMR (500 MHz, CDCl₃) δ 8.61 (1H, s), 8.10 (1H, dd, *J* 8.6, 1.8), 7.93 (1H, d, *J* 8.1), 7.87 (2H, dd, *J* 8.4, 4.4), 7.70 (1H, dd, *J* 6.8, 1.0), 7.57 (2H, dtd, *J* 16.2, 6.9, 1.2), 7.29 – 7.22 (4H, m), 7.18 (2H, ddd, *J* 14.4, 8.2, 2.6), 7.13 (1H, s), 7.06 (2H, dd, *J* 6.4, 2.9), 5.27 (2H, s), 4.55 (2H, s) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 197.99, 137.56, 136.68, 135.65, 134.09, 132.62, 130.41, 129.75, 128.83, 128.55, 128.51, 128.19, 127.86, 127.67, 127.46, 126.85, 126.82, 124.51, 122.14, 119.63, 119.15, 109.95, 108.37, 50.11, 35.89 ppm. HRMS (ESI): m/z [M+Na]⁺ calcd for C₂₇H₂₁NNaO: 398.1515, found: 398.1515.

(E)-1-(1-benzyl-1H-indol-3-yl)pent-3-en-2-one (5cg)

¹H NMR (500 MHz, CDCl₃) δ 7.59 (1H, d, J 7.8), 7.38 – 7.23 (4H, m), 7.20 (1H, t, J 7.1), 7.14 (3H, dd, J 12.3, 7.3), 7.08 (1H, s), 6.98 (1H, dq, J 18.2, 6.9), 6.25 (1H, dd, J 15.6, 1.6), 5.31 (2H, s), 3.94 (2H, s), 1.86 (3H, dd, J 6.9, 1.6) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 197.77, 143.19, 137.60, 136.75, 130.68, 128.88, 128.27, 127.74, 127.36, 126.95, 122.12, 119.60, 119.14, 109.91, 108.15, 50.15, 37.86, 18.37 ppm. HRMS (ESI): m/z [M+Na]⁺ calcd for C₂₀H₁₉NNaO: 312.1359, found: 312.1359.

1-(1-methyl-2-phenyl-1*H*-indol-3-yl)butan-2-one (5sb)

¹H NMR (500 MHz, CDCl₃) δ 7.57 – 7.50 (3H, m), 7.48 (1H, dd, *J* 10.3, 4.4), 7.44 – 7.35 (3H, m), 7.32 – 7.27 (1H, m), 7.18 (1H, td, *J* 7.5, 0.8), 3.75 (2H, s), 3.64 (3H, s), 2.40 (2H, q, *J* 7.3), 0.97 (3H, t, *J* 7.3) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 210.28, 139.38, 137.38, 131.57, 130.66, 128.72, 128.54, 127.77, 122.19, 119.93, 119.04, 109.62, 106.44, 39.57, 34.76, 31.03, 7.95 ppm. HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₉H₁₉NNaO: 300.1359, found: 300.1359.

2-(1-benzyl-1*H*-indol-3-yl)pentan-3-one (**5yb**)

¹H NMR (500 MHz, CDCl₃) δ 7.60 (1H, d, *J* 7.9), 7.36 – 7.23 (4H, m), 7.19 (1H, t, *J* 7.3), 7.12 (3H, dd, *J* 16.3, 7.9), 7.00 (1H, s), 5.29 (2H, s), 4.04 (1H, q, *J* 7.0), 2.58 – 2.30 (2H, m), 1.49 (3H, d, *J* 7.0), 0.96 (3H, t, *J* 7.3) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 212.53, 137.51, 136.93, 128.92, 127.79, 127.37, 126.90, 126.04, 122.22, 119.66, 119.28, 115.16, 110.03, 50.21, 43.97, 33.53, 17.13, 8.28 ppm. HRMS (ESI): m/z [M+Na]⁺ calcd for C₂₀H₂₁NNaO: 314.1515, found: 314.1515.

tert-butyl (1-(1-benzyl-1*H*-indol-3-yl)-2-oxobutyl)carbamate (**5zb**)

¹H NMR (500 MHz, CDCl₃) δ 7.60 (1H, d, J 7.9), 7.32 – 7.22 (4H, m), 7.18 (1H, t, J 7.5), 7.14 (1H, s), 7.12 (1H, d, J 6.6), 7.07 (2H, d, J 6.7), 5.64 (2H, m), 5.26 (2H, s), 2.60 – 2.38 (2H, m), 1.40 (9H, s), 0.99 (3H, t, J 7.3) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 207.69, 155.30, 137.00, 136.97, 128.93, 127.90, 127.90, 126.91, 126.51, 122.59, 120.29, 119.35, 110.55, 110.21, 79.74, 56.39, 50.28, 32.96, 28.46, 8.01 ppm. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₄H₂₉N₂O₃: 393.2173, found: 393.2167.

4-(1-benzyl-1*H*-indol-3-yl)hept-6-en-3-one (**5zab**)

¹H NMR (500 MHz, CDCl₃) δ 7.66 (1H, d, J 7.7), 7.29 (4H, t, J 8.0), 7.18 (2H, dt, J 14.7, 7.1), 7.09 (2H, d, J 6.8), 7.03 (1H, s), 5.79 (1H, dt, J 24.0, 12.0), 5.31 (2H, s), 5.06 (1H, d, J 17.0), 4.98 (1H, d, J 10.2), 4.03 (1H, t, J 7.5), 2.89 (1H, dt, J 14.5, 7.3), 2.65 – 2.34 (3H, m), 0.98 (3H, t, J 7.3) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 211.12, 137.46, 136.85, 136.56, 128.89, 127.77, 127.52, 126.79, 126.65, 122.21, 119.70, 119.28, 116.41, 112.85, 110.04, 50.17, 49.55, 36.14, 34.60, 8.13 ppm. HRMS (ESI): m/z [M+H]⁺ calcd for C₂₂H₂₄NO: 318.1852, found: 318.1853.

1-(1-benzyl-1*H*-indol-2-yl)butan-2-one (5zbb)

¹H NMR (500 MHz, CDCl₃) δ 7.62 (1H, d, *J* 7.6), 7.34 – 7.19 (4H, m), 7.15 (2H, dt, *J* 14.7, 7.0), 6.95 (2H, d, *J* 7.0), 6.49 (1H, s), 5.33 (2H, s), 3.77 (2H, s), 2.45 (2H, q, *J* 7.3), 0.97 (3H, t, *J* 7.3) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 207.64, 137.73, 137.63, 133.34, 128.91, 128.01, 127.53, 126.11, 121.83, 120.42, 119.99, 109.77, 102.94, 46.86, 41.77, 35.03, 7.72 ppm. HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₉H₁₉NNaO: 300.1359, found: 300.1359.

1-(1,3-dimethyl-1*H*-indol-2-yl)butan-2-one(**5zcb-C2**) & 1-(1,2-dimethyl-1*H*-indol-3-yl)butan-2-one (**5zcb-C3**)

Regioisomers were obtained in 5zcb-C2 and 5zcb-C3 at a ratio of 4:3, respectively.

¹H NMR (500 MHz, CDCl₃) δ 7.56 (1H, d, *J* 7.9, **5zcb-C2**), 7.49 (0.72H, d, *J* 6.9, **5zcb-C3**), 7.28 (1.81H, d, *J* 7.7), 7.25 – 7.16 (1.70H, m), 7.16 – 7.08 (1.66H, m), 3.84 (2H, s, **5zcb-C2**), 3.75 (1.45H, s, **5zcb-C3**), 3.68 (2.15H, s, **5zcb-C3**), 3.64 (3H, s, **5zcb-C2**), 2.45 (3.44H, qd, *J* 7.3, 1.6), 2.39 (2.15H, s, **5zcb-C3**), 2.34 (3H, s, **5zcb-C2**), 1.01 (5.17H, dt, *J* 16.6, 7.3) ppm. ¹³C NMR (126 MHz, CDCl₃) δ 210.03, 207.96, 137.15, 136.79, 134.58, 129.63, 128.28, 127.72, 121.63, 121.02, 119.41, 119.04, 118.61, 117.89, 108.98, 108.85, 108.72,

104.28, 39.71, 39.35, 34.83, 34.38, 30.02, 29.72, 10.49, 9.16, 7.92, 7.73 ppm. HRMS (ESI): m/z [M+Na]⁺ calcd for C₁₄H₁₇NNaO: 238.1202, found: 238.1202.

5. Optimization of Reaction Conditions

Table S1. Optimization of the reaction with 1a and 2a.^a

			[PC] 1 mol%			-Ac	
	Ме		נואן Ligand				
		Br	Base 1.0 equiv Additive 1.5 equi	v uiv	\sim	-	
	N N	+	Solvent				
	1a Me	2a	Blue LEDs, 16 h	, rt	Ne 3aa		
entry	[PC]	[Ni] (mol%)	ligand (mol%)	base	additive	solvent (M)	result (%)
1	Ir(dFCF3ppy)2(dtbbpy)PF6	NiCl ₂ glyme (10)	dtbbpy (15)	DABCO	-	DMF (0.1M)	29
2	lr(ppy) ₃	NiCl ₂ glyme (10)	dtbbpy (15)	DABCO	-	DMF (0.1M)	0
3	Ru(bpy) ₃ Cl ₂	NiCl ₂ glyme (10)	dtbbpy (15)	DABCO	-	DMF (0.1M)	0
4	4-CzIPN	NiCl ₂ glyme (10)	dtbbpy (15)	DABCO	-	DMF (0.1M)	4
5	2,4,6-triphenylpyrylium BF ₄	NiCl ₂ glyme (10)	dtbbpy (15)	DABCO	-	DMF (0.1M)	0
6	Ir(dFCF3ppy)2(dtbbpy)PF6	NiBr ₂ glyme (10)	dtbbpy (15)	DABCO	-	DMF (0.1M)	29
7	Ir(dFCF3ppy)2(dtbbpy)PF6	Ni(cod) ₂ (10)	dtbbpy (15)	DABCO	-	DMF (0.1M)	20
8	Ir(dFCF ₃ ppy) ₂ (dtbbpy)PF ₆	Ni(acac) ₂ (10)	dtbbpy (15)	DABCO	-	DMF (0.1M)	trace
9	Ir(dFCF3ppy)2(dtbbpy)PF6	NiBr ₂ glyme (10)	dtbbpy (15)	K ₃ PO ₄	-	DMF (0.1M)	0
10	$Ir(dFCF_3ppy)_2(dtbbpy)PF_6$	NiBr ₂ glyme (10)	dtbbpy (15)	K ₂ CO ₃	-	DMF (0.1M)	13
11	$Ir(dFCF_3ppy)_2(dtbbpy)PF_6$	NiBr ₂ glyme (10)	dtbbpy (15)	DBU	-	DMF (0.1M)	35
12	$Ir(dFCF_3ppy)_2(dtbbpy)PF_6$	NiBr ₂ glyme (10)	dtbbpy (15)	2,4,6-collidine	-	DMF (0.1M)	0
13	Ir(dFCF3ppy)2(dtbbpy)PF6	NiBr ₂ glyme (10)	dtbbpy (15)	BTMG	-	DMF (0.1M)	31
14	$Ir(dFCF_3ppy)_2(dtbbpy)PF_6$	NiBr ₂ glyme (10)	dtbbpy (15)	DBU	-	DMA (0.1M)	40
15	$Ir(dFCF_3ppy)_2(dtbbpy)PF_6$	NiBr ₂ glyme (10)	dtbbpy (15)	DBU	-	DMSO (0.1M)	21
16	$Ir(dFCF_3ppy)_2(dtbbpy)PF_6$	NiBr ₂ glyme (10)	dtbbpy (15)	DBU	-	CH ₃ CN (0.1M)	30
17	$Ir(dFCF_3ppy)_2(dtbbpy)PF_6$	NiBr ₂ glyme (10)	dtbbpy (15)	DBU	-	CH ₂ Cl ₂ (0.1M)	trace
18	Ir(dFCF3ppy)2(dtbbpy)PF6	NiBr ₂ glyme (10)	dtbbpy (15)	DBU	-	toluene (0.1M)	27
19	$Ir(dFCF_3ppy)_2(dtbbpy)PF_6$	NiBr ₂ glyme (10)	2,2'-bipyridine (15)	DBU	-	DMA (0.1M)	27
20	$Ir(dFCF_3ppy)_2(dtbbpy)PF_6$	NiBr ₂ glyme (10)	2,2-bisoxazole (15)	DBU	-	DMA (0.1M)	14
21	$Ir(dFCF_3ppy)_2(dtbbpy)PF_6$	NiBr ₂ glyme (10)	Terpyridine (15)	DBU	-	DMA (0.1M)	35
22	Ir(dFCF ₃ ppy) ₂ (dtbbpy)PF ₆	NiBr ₂ glyme (10)	1,10-phenanthroline (15)	DBU	-	DMA (0.1M)	44
23 ^b	$Ir(dFCF_3ppy)_2(dtbbpy)PF_6$	NiBr ₂ glyme (10)	1,10-phenanthroline (15)	DBU	ZnBr ₂	DMA (0.1M)	12
24 ^b	$Ir(dFCF_3ppy)_2(dtbbpy)PF_6$	NiBr ₂ glyme (10)	1,10-phenanthroline (15)	DBU	MgBr ₂	DMA (0.1M)	trace
25 ^b	$Ir(dFCF_3ppy)_2(dtbbpy)PF_6$	NiBr ₂ glyme (10)	1,10-phenanthroline (15)	DBU	LiCI	DMA (0.1M)	73
26 ^b	$Ir(dFCF_3ppy)_2(dtbbpy)PF_6$	NiBr ₂ glyme (10)	1,10-phenanthroline (15)	DBU	LiBr	DMA (0.1M)	22
27 ^b	$Ir(dFCF_3ppy)_2(dtbbpy)PF_6$	NiBr ₂ glyme (10)	1,10-phenanthroline (15)	DBU	TBACI	DMA (0.1M)	70
28 ^b	Ir(dFCF ₃ ppy) ₂ (dtbbpy)PF ₆	NiBr ₂ glyme (10)	1,10-phenanthroline (15)	DBU	TBABr	DMA (0.1M)	38
29 ^b	$Ir(dFCF_3ppy)_2(dtbbpy)PF_6$	NiBr ₂ glyme (5)	1,10-phenanthroline (7.5)	DBU	LiCl	DMA (0.05M)	78
30 ^b	Ir(dFCF3ppy)2(dtbbpy)PF6	NiCl ₂ glyme (5)	1,10-phenanthroline (7.5)	DBU	LiCl	DMA (0.05M)	83 (73) ^c

^a Reaction condition: **1a** (0.13 mmol), **2a** (0.10 mmol), **[PC]** (1.0 mol%), **[Ni]**, **Iigand**, **base** (0.10 mmol), **additive** (0.15 mmol) and **solvent** irradiated with 34W blue LEDs. Yields are determined by gas chromatography using dodecane as an internal standard. ^b **1a** (0.15 mmol). ^c The reaction was carried out under air conditions. glyme=1,2-dimethoxyethane. dtbbpy=4,4'-di-*tert*-butyl-2,2'-bipyridine. DBU=1,8-diazabicyclo[5.4.0]undec-7-ene. DABCO=1,4-diazabicyclo[2.2.2]octane. DMF=*N*,*N*-dimethylformamide. 4CzIPN=1,2,3,5-tetrakis(carbazol-9-yl)-4,6-dicyanobenzene. DMA=*N*,*N*-dimethylacetamide. BTMG=2-*tert*-butyl-1,1,3,3-tetramethyl-guanidine. DMSO=dimethyl sulfoxide.

Table S2. Evaluation of other Ni sources.^a

^a The reaction was carried out with the General procedure E.

Table S3. Attempted enantioselective arylation with chiral ligands.

All reactions performed in the presence of a chiral ligand did not show the required level of reactivity in the first place. Hence, the enantioselective benzylic functionalization has been excluded from the scope of the current study.

Table S4. Attempted enantioselective acylation with chiral ligands.

All reactions performed in the presence of a chiral ligand did not show the required level of reactivity in the first place. Hence, the enantioselective benzylic functionalization has been excluded from the scope of the current study.

Table S5. Unsuccessful substrates for the arylation reaction.

Table S6. Unsuccessful substrates for the acylation reaction.

6. Radical Trapping Experiments

The reaction was set up in a nitrogen-filled glove box. To a 8 mL vial equipped with a PTFE-coated stirrer bar were added the corresponding indole **1a** (0.30 mmol, 1.5 equiv), $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ (2.2 mg, 0.0020 mmol, 1.0 mol%), NiCl₂·glyme (2.2 mg, 0.010 mmol, 5.0 mol%), 1,10-phenanthroline (2.7 mg, 0.015 mmol, 7.5 mol%), DBU (30 µL, 0.20 mmol, 1.0 equiv), LiCl (12.7 mg, 0.30 mmol, 1.5 equiv), aryl halide **2a** (0.20 mmol, 1.0 equiv), (2,2,6,6-tetramethylpiperidine-1-yl)oxy (93.7 mg, 0.60 mmol, 3.0 equiv) and DMA (4.0 mL). The reaction vial was removed from the glove box, set to stir for 16 h under 34 W blue LED irradiation with fan cooling. At the end of the reaction, the resulting solution was transferred to a separatory funnel and partitioned between water (7 mL) and Et₂O (20 mL). The organic extract was washed with water (7 mL x 2) and brine (7 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude residue was analyzed by ¹H NMR relative to 1,1,2,2-tetrachloroethane(10 µL, 0.094 mmol) as an external standard to determine the existence of product **3a**.³⁰

In the LC-MS analysis, product **3aa** was not detected and the TEMPO-indole adduct was detected. This indicates that the reaction indeed proceeds through a radical pathway and indole radical is generated during the reaction. Figure S2 depicts the selective ion chromatogram with peaks showing molecular weight values of 301.23. The peak eluted at 13.120 min was determined to be the TEMPOindole adduct. The mass spectrum is shown in Figure S2.

Figure S1. ¹H-NMR spectrum of the crude reaction mixture.

Figure S2. LC-MS spectrum of the crude mixture showing ions of mass 301.2.
7. Control Experiments to Exclude the HAT Process (Scheme 3)

Giese addition with LiCl

For the experiments shown in Scheme 3a, the following procedure was employed.

The reaction was set up in a nitrogen-filled glove box. To a 4 mL vial equipped with a PTFE-coated stirring bar were added the corresponding indole **1a** (14.6 mg, 0.10 mmol, 1.0 equiv), methyl acrylate (10.8 μ L, 0.12 mmol, 1.2 equiv), Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ (1.1 mg, 0.0010 mmol, 1.0 mol%), DBU (15 μ L, 0.10 mmol, 1.0 equiv), LiCl (6.3 mg, 0.15 mmol, 1.5 equiv), and DMF (2.0 mL). The reaction vial was removed from the glove box, set to stir for 16 h under 34 W blue LED irradiation with fan cooling. At the end of the reaction, the resulting solution was transferred to a separatory funnel and partitioned between water (7 mL) and Et₂O (20 mL). The organic extract was washed with water (7 mL x 2) and brine (7 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude residue was analyzed by ¹H NMR relative to 1,1,2,2-tetrachloroethane as an external standard.

Stoichiometric experiment with [Ni]-1

The oxidative addition complex **[Ni]-1** was prepared following the literature procedure.²² For the experiments shown in Scheme 3b, the following procedure was employed.

$MeO \longrightarrow N^{(10)} N^{($				
entry	oxidant	additives	base	result
1	(TBPA)SbCl ₆	-	-	N.D.
2	(TBPA)SbCl ₆ (dark)	-	-	N.D.
3	(TBPA)SbCl ₆	LiCl	-	N.D.
4	Ir(dFCF3ppy)2(dtbbpy)PF6	-	-	N.D.
5	Ir(dFCF ₃ ppy) ₂ (dtbbpy)PF ₆	LiCl	-	N.D.
6	Ir(dFCF ₃ ppy) ₂ (dtbbpy)PF ₆	LiCl	DBU	N.D.

Table S7. Stoichiometric experiment result of nickel complex [Ni]-1 with various oxidants and additives.

The reaction was set up in a nitrogen-filled glove box. To a 4 mL vial equipped with a PTFE-coated stirring bar were added the corresponding **[Ni]-1** (25 mg, 0.050 mmol, 1.0 equiv), indole **1a** (7.3 mg, 0.050 mmol, 1.0 equiv), oxidant (0.050 mmol, 1.0 equiv), LiCl (42.39 mg, 1.0 mmol, 20 equiv), DBU (7.5 μ L, 0.050 mmol, 1.0 equiv), and DMF (2.0 mL). The reaction vial was removed from the glove box, set to stir for 16 h under 34 W blue LED irradiation with fan cooling. At the end of the reaction, the resulting solution was transferred to a separatory funnel and partitioned between water (7 mL) and Et₂O (20 mL). The organic extract was washed with water (7 mL x 2) and brine (7 mL), dried over MgSO₄, filtered, and concentrated under reduced pressure. The crude residue was analyzed by ¹H NMR relative to 1,1,2,2-tetrachloroethane as an external standard.

8. Fluorescence Quenching Experiment (Stern-Volmer Relationship)

Fluoresence quenching experiment was conducted with 25 μ M Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆ in DMA. Various substrates were used as quenchers (see below in more detail). Samples were excited at 400 nm and peak emissions were recorded at 500 nm to construct the Stern-Volmer regression.

Figure S3. Stern-Volmer quenching study with 1,3-dimethyl-1H-indole, 1a.

Figure S4. Stern-Volmer quenching study with LiCl.

Figure S5. Stern-Volmer quenching studies with various indoles (1a, 1g-1i) and other heterocyclic compounds (7a-7c).

9. Electrochemical Characterizations

The electrochemical properties of the substrates and photocatalyst were characterized by standard cyclic voltammetry (CV) techniques. The samples were dissolved in Ar-saturated CH₃CN (10 mL) to a concentration of 10.0 mM of photocatalyst and 5.0 mM of other substrates. The solution contained 0.10 M TBAPF₆ supporting electrolyte. A three-electrode cell assembly consisting of a glassy carbon (GC) working electrode, a Pt coiled counter electrode, and Ag/AgCl pseudo reference electrode was employed for the voltammetric measurements.

9.1. Procedure for Ir[dF(CF₃)ppy]₂(dtbbpy)PF₆

The cyclic voltammogram was acquired at a scan rate of 0.10 V s⁻¹ and a scan range of -1.8 to 0.0 V. The excited-state reduction potential of $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ was calculated from the triplet state energy (2.57 eV) and ground-state redox reduction potential. The cyclic voltammograms indicates that a reversible reduction occurred at -1.32 V vs. Ag/AgCl. As a result, the excited-state reduction potential of $Ir[dF(CF_3)ppy]_2(dtbbpy)PF_6$ is +1.24 V vs. Ag/AgCl.

Figure S6. Left, cyclic voltammograms (grey line) of 10.0 mM of **[Ir]** obtained in Ar-saturated CH₃CN. The dotted line is an electrochemical response of a blank CH₃CN solution. Right, the phosphorescence spectrum of **[Ir]**. The photoexcitation wavelength was 400 nm.

9.2. Procedure for 1,3-dimethyl-1H-indole (1a)

The cyclic voltammogram was acquired at a scan rate of 0.10 V s⁻¹ and a scan range of 0.0 to +2.0 V. The cyclic voltammograms indicates that an irreversible oxidation occurred at +1.00 V vs. Ag/AgCl.

Figure S7. The cyclic voltammograms (grey line) of 5.0 mM of 1,3-dimethyl-1*H*-indole obtained in Ar-saturated CH₃CN. The dotted line is an electrochemical response of a blank CH₃CN solution.

9.3. Procedure for tert-butyl 3-methyl-1H-indole-1-carboxylate (1h)

The cyclic voltammogram was acquired at a scan rate of 0.10 V s⁻¹ and a scan range of 0.0 to +2.0 V. The cyclic voltammograms indicates that an irreversible oxidation occurred at +1.49 V vs. Ag/AgCl.

Figure S8. The cyclic voltammograms (grey line) of 5.0 mM of *tert*-butyl 3-methyl-1*H*-indole-1-carboxylate obtained in Arsaturated CH₃CN. The dotted line is an electrochemical response of a blank CH₃CN solution.

9.4. Procedure for lithium chloride (LiCl)

The cyclic voltammogram was acquired at a scan rate of 0.10 V s⁻¹ and a scan range of 0.0 to +2.5 V. The cyclic voltammograms indicates that an irreversible oxidation occurred at +1.31 V vs. Ag/AgCl.

Figure S9. The cyclic voltammograms (grey line) of 5.0 mM of lithium chloride obtained in Ar-saturated CH₃CN. The dotted line is an electrochemical response of a blank CH₃CN solution.

9.5. Procedure for 3-methyl-1-(triisopropylsilyl)-1H-pyrrole (7c)

The cyclic voltammogram was acquired at a scan rate of 0.10 V s⁻¹ and a scan range of 0.0 to +2.0 V. The cyclic voltammograms indicates that an irreversible oxidation occurred at +1.32 V vs. Ag/AgCl.

Figure S10. The cyclic voltammograms (grey line) of 5.0 mM of 3-methyl-1-(triisopropylsilyl)-1*H*-pyrrole obtained in Arsaturated CH₃CN. The dotted line is an electrochemical response of a blank CH₃CN solution.

10. Kinetic Isotope Effect (KIE) Experiment

The reaction was set up in a nitrogen-filled glove box. To a 8 mL vial equipped with a PTFE-coated stirrer bar were added the corresponding indole **1a** (0.30 mmol, 1.5 equiv) deutrated indole **D-1a** (0.30 mmol, 1.5 equiv), $Ir[dF(CF_3)ppy]_2(dtbpy)PF_6$ (2.2 mg, 0.0020 mmol, 1.0 mol%), $NiCl_2 \cdot glyme$ (2.2 mg, 0.010 mmol, 5.0 mol%), 1,10-phenanthroline (2.7 mg, 0.015 mmol, 7.5 mol%), DBU (30 µL, 0.20 mmol, 1.0 equiv), LiCl (12.7 mg, 0.30 mmol, 1.5 equiv) the corresponding aryl halide **2c** (0.20 mmol, 1.0 equiv), and DMA (4.0 mL). The reaction vial was removed from the glove box, set to stir for 16 h under 34 W blue LED irradiation with fan cooling. At the end of the reaction, the resulting solution was transferred to a separatory funnel and partitioned between water (7 mL) and Et_2O (20 mL). The organic extract was washed with water (7 mL x 2) and brine (7 mL), dried over $MgSO_4$, filtered, and concentrated under reduced pressure. Flash column chromatography purification led to the 72% of the combined arylated products. The KIE value was $k_H/k_D=2.36$ determined by ¹H NMR spectrum (Figure S11).

Figure S11. ¹H-NMR spectrum of KIE experiment, D-3ac.

11. References

- M. S. Lowry, J. I. Goldsmith, J. D. Slinker, R. Rohl, R. A. Pascal, G. G. Malliaras and S. Bernhard, *Chem. Mater.*, 2005, **17**, 5712-5719.
 D. M. Arias-Rotondo and J. K. McCusker, *Chem. Soc. Rev.*, 2016, **45**, 5803-5820.
 R. B. Bedford, N. Fey, M. F. Haddow and R. F. Sankey, *Chem. Commun.*, 2011, **47**, 3649-3651. 1. 2. 3.

- 4. 5. T. Tomakinian, R. Guillot, C. Kouklovsky and G. Vincent, Angew. Chem. Int. Ed., 2014, 53, 11881-11885
 - L. Wang, J. Zhou, T.-M. Ding, Z.-Q. Yan, S.-H. Hou, G.-D. Zhu and S.-Y. Zhang, Org. Lett., 2019, 21, 2795-2799.
- Y.-M. Su, Y. Hou, F. Yin, Y.-M. Xu, Y. Li, X. Zheng and X.-S. Wang, *Org. Lett.*, 2014, **16**, 2958-2961. M. Taddei, M. G. Mura, S. Rajamäki, L. D. Luca and A. Porcheddu, *Adv. Synth. Catal.*, 2013, **355**, 3002-3013.
- 6. 7. 8. 9. 10.
 - D. Dhanak and C. B. Reese, J. Chem. Soc., Perkin Trans. 1, 1986, 2181-2186.
 Y. Feng, D. Holte, J. Zoller, S. Umemiya, L. R. Simke and P. S. Baran, J. Am. Chem. Soc., 2015, 137, 10160-10163.
 S. Rohrbach, R. S. Shah, T. Tuttle and J. A. Murphy, Angew. Chem. Int. Ed., 2019, 58, 11454-11458.
 Qiang-Liu, Y.-X. Liu, H.-J. Song and Q.-M. Wang, Adv. Synth. Catal., 2020, 362, 3110-3115.
 J. Ni, H. Wang and S. E. Reisman, Tetrahedron, 2013, 69, 5622-5633.
- 11.
- 12
- 13. 14.
- J. Ni, H. Wang and S. E. Reisman, *Tetrahedron*, 2013, **69**, 5622-5633.
 L. M. Repka, J. Ni and S. E. Reisman, *J. Am. Chem. Soc.*, 2010, **132**, 14418-14420.
 J. J. Newsome, E. Swann, M. Hassani, K. C. Bray, A. M. Z. Slawin, H. D. Beall and C. J. Moody, *Org. Biomol. Chem.*, 2007, **5**, 1629-1640.
 M. Peña-López, H. Neumann and M. Beller, *Chem. Eur. J.*, 2014, **20**, 1818-1824.
 X. Zeng, R. Kinjo, B. Donnadieu and G. Bertrand, *Angew. Chem. Int. Ed.*, 2010, **49**, 942-945.
 D. Zhang, T. Iwai and M. Sawamura, *Org. Lett.*, 2020, **22**, 5240-5245.
 T. Mandal, G. Chakraborti and J. Dash, *Tetrahedron Lett.*, 2020, **61**, 152109.
 B. E. Denierle, L. Misond, S. E. Deinmene, *Angew. Angew. Chem. Ed.*, 2010, **49**, 2402.
- 15 16.
- 17
- 18.
- B. E. Daniels, J. Ni and S. E. Reisman, Angew. Chem. Int. Ed., 2016, 55, 3398-3402. 19.
- 20 A. J. Smith, A. Young, S. Rohrbach, E. F. O'Connor, M. Allison, H.-S. Wang, D. L. Poole, T. Tuttle and J. A. Murphy, Angew. Chem. Int. Ed., 2017, 56, 13747-13751.
- 21. C. L. Hansen, R. G. Ohm, L. B. Olsen, E. Ascic, D. Tanner and T. E. Nielsen, Org. Lett., 2016, 18, 5990-5993.
- 22
- 23. 24
- S.-Z. Sun and R. Martin, *Angew. Chem. Int. Ed.*, 2018, **57**, 3622-3625.
 G. Goverdhan, A. R. Reddy, V. Himabindu and G. M. Reddy, Synth. Commun., 2013, **43**, 498-504.
 S. Laufer and F. Lehmann, *Bioorg. Med. Chem. Lett.*, 2009, **19**, 1461-1464.
 T. Utsumi, K. Noda, D. Kawauchi, H. Ueda and H. Tokuyama, *Adv. Synth. Catal.*, 2020, **362**, 3583-3588. 25.
- 26 A. A. Martinez, B. A. Espinosa, R. N. Adamek, B. A. Thomas, J. Chau, E. Gonzalez, N. Keppetipola and N. T. Salzameda, Eur. J. Med. Chem., 2018, 157, 1202-1213.
- X. Zhong, N. Chen and J. Xu, New J. Chem., 2018, 42, 13549-13557. 27
- M. Géraldy, M. Morgen, P. Sehr, R. R. Steimbach, D. Moi, J. Ridinger, I. Oehme, O. Witt, M. Malz, M. S. Nogueira, O. Koch, N. Gunkel and A. K. Miller, 28 J. Med. Chem., 2019, 62, 4426-4443.
- A. Klinkebiel, O. Beyer, B. Malawko and U. Lüning, Beilstein J. Org. Chem., 2016, 12, 2267-2273. 29
- L. Buzzetti, A. Prieto, S. R. Roy and P. Melchiorre, Angew. Chem. Int. Ed., 2017, 56, 15039-15043. 30

12. NMR spectra

1e (¹H NMR)

1e (¹³C NMR)

1k (¹H NMR)

1k (¹³C NMR)

1n (¹H NMR)

1n (¹³C NMR)

10 (¹H NMR)

10 (¹³C NMR)

1q (¹H NMR)

1q (¹³C NMR)

1q (¹⁹F NMR)

1u (¹H NMR)

1u (¹³C NMR)

1w (¹H NMR)

1w (¹³C NMR)

1z (¹³C NMR)

D-1a (¹H NMR)

D-1a (¹³C NMR)

2t (13C NMR)

3aa (¹H NMR)

3aa (13C NMR)

3ba (13C NMR)

3ca (13C NMR)

3da (¹H NMR)

3da (13C NMR)

3ea (¹H NMR)

3fa (¹H NMR)

3fa (13C NMR)

3ga (¹H NMR)

3ja (¹H NMR)

3ja (13C NMR)

3ka (¹H NMR)

3la (¹H NMR)

3la (13C NMR)

3ma (¹H NMR)

3ma (13C NMR)

3na (¹H NMR)

3na (13C NMR)

3oa (¹H NMR)

30a (13C NMR)

3pa (¹H NMR)

3pa (13C NMR)

3qa (¹H NMR)

3qa (¹⁹F NMR)

3ra (¹H NMR)

3ra (¹³C NMR)

3sa (¹H NMR)

3sa (13C NMR)

3ta (¹H NMR)

3ta (¹³C NMR)

3ua (¹H NMR)

3ua (13C NMR)

3va (¹H NMR)

3va (¹³C NMR)

3ab (¹H NMR)

3ab (13C NMR)

3ac (¹H NMR)

3ac (¹³C NMR)

3ad (¹H NMR)

3ad (13C NMR)

3ad (19F NMR)

3ae (¹H NMR)

3ae (13C NMR)

3af (¹H NMR)

3af (¹³C NMR)

3ag (13C NMR)

3ag (¹⁹F NMR)

3ah (¹H NMR)

3ah (13C NMR)

3ai (¹H NMR)

3ai (¹³C NMR)

3aj (¹H NMR)

3aj (¹³C NMR)

L 300

. 280 . 260 . 240

. 220

. 200

_ 180 . _ 160 . _ 140 . _ 120

3ak (¹H NMR)

3al (¹H NMR)

3al (13C NMR)

3am (¹H NMR)

3am (13C NMR)

3an (¹H NMR)

3an (13C NMR)

3ao (¹H NMR)

3ao (13C NMR)

3ap (¹H NMR)

3ap (13C NMR)

3xp (¹H NMR)

3xp (13C NMR)

3aq (¹H NMR)

3aq (13C NMR)

3ar (¹H NMR)

3ar (¹³C NMR)

3as (¹H NMR)

3as (13C NMR)

3wt (¹H NMR)

3wm (¹H NMR)

3wm (13C NMR)

3wn (¹H NMR)

3wn (¹³C NMR)

5ca (¹H NMR)

5ca (13C NMR)

5cb (¹H NMR)

5cb (¹³C NMR)

5cc (¹H NMR)

5cc (13C NMR)

5cd (¹H NMR)

5cd (13C NMR)

5ce (¹H NMR)

5ce (13C NMR)

5cf (¹H NMR)

5cf (13C NMR)

5cg (¹H NMR)

5cg (13C NMR)

5sb (¹H NMR)

5sb (¹³C NMR)

5yb (¹H NMR)

5yb (¹³C NMR)

5zb (¹H NMR)

5zb (¹³C NMR)

5zab (¹H NMR)

5zab (13C NMR)

5zbb (¹H NMR)

5zbb (¹³C NMR)

5zcb (¹H NMR)

5zcb (¹³C NMR)

5zcb-C2 (NOSEY)

5zcb-C3 (NOSEY)

