Electronic Supplemental Information

Molecularly-Tunable Nanoelectrode Arrays Created by Harnessing Intermolecular Interactions

Han-Wen Cheng^{a,b*}, Shan Wang^b, Marc D. Porter^{c*}, and Chuan-Jian Zhong^{b*}

^{a)} School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China

^{b)} Department of Chemistry, State University of New York at Binghamton, Binghamton, New York 13902, USA

^{c)} Department of Chemistry and Chemical Engineering, University of Utah, Salt Lake City, Utah 84112, USA

Additional experimental data and data analysis:

Table S1 Summary of the binding strength estimated based on density functional theory (DFT)-calculated $E_b^{*[1,2]}$ for the selected thiolate molecules (CH₃(CH₂)_{*n*-1}SH) on gold surfaces.

Thiolate molecules		E_b^* (eV)
FTP	-3.43	Linear extrapolation based on "electronegativity vs. E*" ($E_b = -0.6449 \times n - 0.8533$)
MHA	-4.39	Linear regression based on Ref. ^[1] ($E_b = -0.1043 \times n - 2.6286$)
MBA	-2.56	Ref. ^[2]
TP	-2.20	Ref. ^[2]
ET	-2.61	Ref. ^[2]
MUA	-3.48	Linear regression based on Ref. ^[1] ($E_b = -0.1043 \times n - 2.6286$)
HDT	-4.0392	Linear regression based on Ref. ^[1] ($E_b = -0.1063 \times n - 2.3384$) ^[2]

Fig. S1 Voltammetric curves (dashed and colored curves represent deconvoluted waves). (A) TP/ET: (a) TP (E_p = -0.58 V). (b), (c), (d), (e), (f), (g), and (h) TP/ET (mixing ratios: 30, 15, 10, 5, 2, 0.5, and 0.1 with a total thiol concentration of 5.0 mM. E_p : -0.59 and -0.69 V (b); -0.59 and -0.69 V (c); -0.59 and -0.70 V (d); -0.60 and -0.70 V (e); -0.61 and -0.70 V (f); -0.61, -0.70 and -0.78 V (g) and -0.61, -0.71 and -0.78 V (h)). (i) ET (E_p = -0.72 and -0.78 V). The more negative potential wave corresponds to the monolayer of ET (-0.72 V) which has a narrower width (45 mV) than those for the TP-derived monolayer (-0.58 V, 85 mV) reflects a difference in adsorbate-adsorbate interaction. (B) MUA/HDT: (a) MUA (E_p = -0.89 V). (b), (c), (d), (e), (f), and (g) MUA/HDT (mixing ratios: 18.0, 9.0, 6.0, 3.5, 2.0, and 1.0 with a total thiol concentration of 2.5 mM. E_p : -0.91V and -1.08 V (b), -0.94 and -1.08 V (c), -0.94 and -1.09 V (d), -0.96 and -1.08 V (e), -0.99, and -1.08 (f), -1.05 V, -1.10 and -1.14 V (g)). (h) HDT (E_p : -1.11 and -1.17 V). (Electrolyte: 0.5 M KOH, Geometric surface area of electrode: 0.6

cm², scan rate: 50 mV/sec). In comparison with the single wave characteristic at the less negative potential ($E_p = -0.89$ V) for MUA monolayer, HDT monolayer features a double-wave character at the more negative potential (h), -1.11 V and -1.17 V, which is consistent with earlier finding^[3] on the voltammetric desorption potentials as a function of the number of carbons (*n*) in the alkyl chain.

Fig. S2 Voltammetric curves: (A) (a) FTP (E_p (FTP) = -0.60 V), (b) FTP/MHA (FTP/MHA mixing ratio: 25 with a total thiol concentration of 3.5 mM (E_p (FTP)= -0.68 V and E_p (MHA)= -1.0 V)), and (c) MHA (E_p (MHA)= -1.06 V). (B) (a) MBA (E_p (MBA)= -0.57 V), (b) MBA/MHA (MBA/MHA mixing ratio: 20 and a total thiol concentration of 3.4 mM (E_p (MBA)= -0.78 V and E_p (MHA)= -0.99 V)), and (c) MHA (E_p (MHA)= -1.06 V). (Electrolyte: 0.5 M KOH, Geometric surface area of the electrode: 0.6 cm², and Scan rate: 50 mV/sec).

Fig. S3 (A) Plot of the reductive desorption potentials (E_p) obtained from the experiments for the different pairs of molecules studied in this work. ($E_{p(Ag/AgCl)}$). (B) Reductive desorption potentials (E_p) estimated based on literature reports for different thiolate molecules on gourds surfaces: FTP's $E_{p(SCE)} = -0.73$ V (based on fitting^[2]); MHA's $E_{p(SCE)} = -1.15$ V (based on fitting^[2]); MBA's $E_{p(SCE)} = -0.63$ V^[4]; TP's $E_{p(SCE)} = -0.58$ V^[5]; ET's $E_{p(SCE)} = -0.75$ V^[6]; MUA's $E_{p(SCE)} = -1.08$ V (based on fitting^[2]); and HDT's $E_{p(SCE)} = -1.25$ eV (based on fitting^[2]). Note that the potential is give in $E_{p(Ag/AgCl)}$, which is - 0.05 V with respect to $E_{p(SCE)}$.

(A) (B) **Scheme S1.** Simulation models of the nanoelectrode arrays: disk-shaped (A) and strip-shaped (B) models. Simulation of nanoelectrode array is based on the dimensionless equation of current (*i*) ~ potential (*E*) derived by Amatore *et al.*^[7]:

For disk-type:

$$r_a = r_0 (1 - \theta)^{1/2}$$
For stripe-type: (1)

$$r_a = r_0(1 - \theta) \tag{2}$$

$$\Psi = \Lambda(1-\theta)\exp(\alpha\xi)\left\{\left[1-I\Psi-2r\Psi f(1-\theta)\right]-\left[I\Psi+2r\Psi f(1-\theta)\right]\exp(-\xi)\right\}$$
(3)
where

$$r = r_a \left(\frac{DRT}{F\nu}\right)^{-1/2} \tag{4}$$

$$\Lambda = k_0 \left(\frac{RT}{DF\nu}\right)^{1/2} \tag{5}$$

$$\xi = -\frac{F}{RT}(E - E^0) \tag{6}$$

$$\tau = \frac{\pi T}{RT} Dt \tag{7}$$

$$\Psi = \frac{i}{c(DFv)^{1/2}} \tag{8}$$

$$FAC^{0}\left(\frac{2+2}{RT}\right)$$

$$NV = \frac{1}{2}\left[\frac{\Psi}{2} - \frac{\Psi}{2}\right]$$
(9)

$$I\Psi = \frac{1}{\sqrt{\pi}} \int_{0}^{1} \frac{1}{(\tau - \eta)^{1/2}} d\eta$$
(9)
The $f(1-\theta)$ function is

$$f(1-\theta) = 0.3(1-\theta)^{-1/2} \text{ for disk-type}$$
(10)
and

$$f(1-\theta) = 1 - \frac{1}{\sqrt{\pi}} \ln \left[\frac{\pi}{2} \sin(1-\theta) \right]$$
 for stripe-type (11)

Fig. S4 Theoretical modeling results for the reduction of Fe(CN)₆³⁻ on the perforated MUA/HDT (A) and MBA/MHA (B). (A) The comparison of experimental data (lines) from Fig. 4A (c) with the simulation (points) in strip-model using r_a = 1.23 nm, R_0 = 2.05×10⁴ nm (*1*- θ =6.0×10⁻⁵), *D*= 1.12×10⁻⁶ cm²/s, and *k*=2. (B) The comparison of experimental data (lines) from Fig. 4A (d) with the simulation (points) in strip-model using r_a = 2.74 nm, R_0 = 6.09×10³ nm (*1*- θ =5.0×10⁻⁴), *D*= 1.12×10⁻⁶ cm²/s, and *k*=2.

Fig. S5 Theoretical modeling results for reduction of Ru(NH₃)₆³⁺ at three different pH values on the perforated MBA/MHA system. The comparison of experimental data (lines: a, b, and c) from (Fig. 4B (b-d)) with the simulation (points: a', b', and c') in strip-model using r_a = 0.5 nm, R_0 = 5.57×10⁴ nm ($1-\theta$ =8.0×10⁻¹), D = 7.5×10⁻⁶ cm²/s, and k = 2 for pH~3.4 (a); r_a = 0.9 nm, R_0 = 3.75×10⁴ nm ($1-\theta$ =2.5×10⁻⁵), D = 1.1×10⁻⁵ cm²/s, and k = 2 for pH~6.0 (b); and r_a = 0.4 nm, R_0 = 3.75×10⁴ nm ($1-\theta$ =1.03×10⁻⁴), D = 1.7×10⁻⁵ cm²/s, and k = 2 for pH~10.3 (c).

Table S2. Summar	y of p	arameters f	for nanoe	lectrode arra	y simulation	(disk-model	Fig. 4	4 D- E`)
------------------	--------	-------------	-----------	---------------	--------------	-------------	--------	----------------	---

	Perforated Film	$r_{\rm a}(\rm nm)$	R_0 (nm)	1-θ	$i_{\text{theory}}(\mu A)$	$i_{\text{simulated}}(\mu A)$	N_{μ}
(i) $Fe(CN)_6^{3-1}$	MUA/HDT	2	482	8.62×10-6	3.21×10-7	3.08×10-7	4.39×10 ⁷
(ii) $Fe(CN)_{6}^{3-}$	MBA/MHA	20	1950	1.05×10-4	3.21×10-6	3.07×10-6	5.35×10 ⁶
(iii) $\operatorname{Ru}(\operatorname{NH}_3)_6^{3+}$	MBA/MHA	7.5	2160	1.21×10 ⁻⁵	7.53×10-6	5.71×10 ⁻⁶	4.38×10 ⁶

Note: Data for i, ii and iii are the data from Fig. 4D (a), 4D (b) and 4E (b). $i_{\text{theory}} = 4nFDC^0 r_a$; $i_{\text{simulated}} = I_{\text{lim}} / \#N$ where $N_{\mu} = A_{\text{total}}/A_{\text{singl}} = A_T/\pi R_0^2 = A_T(1-\theta)/\pi r_a^2$, $A_T = 0.64$ cm². (see Fig. S6 for single nanoelectrode limiting current.)

Fig. S6 Comparison between the experimental (line) and simulated (point, disk-model) steady state limiting current based on eqn. 5. (A) Perforated MUA/HDT, (B) perforated MBA/MHA monolayer (Electrolyte: $1 \text{ M KCL with } 1.3 \text{ mM Fe}(\text{CN})_6^{3-}$).

References:

- 1. D. Nassoko, M. Seydou, C. Goldmann, C. Chanéac, C. Sanchez, D. Portehault, F. Tielens. Rationalizing the formation of binary mixed thiol self-assembled monolayers, *Mater. Tod. Chem.*, 2017, **5**, 34-42.
- 2. R. C. Salvarezza, P. Carro. The electrochemical stability of thiols on gold surfaces. *J. Electroanal. Chem.*, 2018, **819**, 234–239.
- 3. C. J. Zhong, M. D. Porter, The fine structures of voltammetric curves for the electrochemical desorption of organosulfur-based monolayers at gold, *J. Electroanal. Chem.*, 1997, **425**, 147.
- 4. M. C. R. González, A. G. I. Orive, P. Carro, R. C. Salvarezza, C. Ahn, Structure and electronic and charge-transfer properties of mercaptobenzoic acid and mercaptobenzoic acid–undecanethiol mixed monolayers on Au (111), *J. Phys. Chem.* 2014, **118**, 30013–30022.
- 5. H. Kang, J. Noh, Influence of thiol molecular backbone structure on the formation and reductive desorption of selfassembled aromatic and alicyclic thiol monolayers on Au(111) surface, *Bull. Kor. Chem. Soc.* 2013, 34, 1383–1387.
- 6. S. Imabayashi, M. Iida, D. Hobara, Z. Q. Feng, K. Niki, T. Kakiuchi, Reductive desorption of carboxylic-acidterminated alkanethiol monolayers from Au(111) surfaces, *J. Electroanal. Chem.* 1997, **428**, 33–38.
- C. Amatore, J. M. Saveant, D. Tessier, Charge transfer at partially blocked surfaces: A model for the case of microscopic active and inactive sites, *J. Electroanal. Chem.*, 1983, 147, 39-51.