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Additional experimental data and data analysis:

Table S1 Summary of the binding strength estimated based on density functional theory (DFT)-calculated Eb*[1,2] 
for the selected thiolate molecules (CH3(CH2)n-1SH) on gold surfaces.

Thiolate molecules Eb* (eV) 
FTP -3.43 Linear extrapolation based on “electronegativity vs. E*” (Eb = -0.6449×n -0.8533)

MHA -4.39 Linear regression based on Ref. [1]  (Eb = -0.1043× n -2.6286)
MBA -2.56 Ref. [2]

TP -2.20 Ref. [2]

ET -2.61 Ref. [2]

MUA -3.48 Linear regression based on Ref. [1]  (Eb = -0.1043× n -2.6286)
HDT -4.0392 Linear regression based on Ref. [1]  (Eb = -0.1063× n -2.3384) [2]

(A)  (B)
Fig. S1 Voltammetric curves (dashed and colored curves represent deconvoluted waves).  (A) TP/ET: (a) TP (Ep= -0.58 V).  
(b), (c), (d), (e), (f), (g), and (h) TP/ET (mixing ratios: 30, 15, 10, 5, 2, 0.5, and 0.1 with a total thiol concentration of 5.0 mM.  
Ep: -0.59 and -0.69 V (b); -0.59 and -0.69 V (c); -0.59 and -0.70 V (d); -0.60 and -0.70 V (e); -0.61 and -0.70 V (f); -0.61, -
0.70 and -0.78 V (g) and -0.61, -0.71 and -0.78 V (h)). (i) ET (Ep= -0.72 and -0.78 V).  The more negative potential wave 
corresponds to the monolayer of ET (-0.72 V) which has a narrower width (45 mV) than those for the TP-derived monolayer 
(-0.58 V, 85 mV) reflects a difference in adsorbate-adsorbate interaction.  (B) MUA/HDT: (a) MUA (Ep = -0.89 V).  (b), (c), 
(d), (e), (f), and (g) MUA/HDT (mixing ratios: 18.0, 9.0, 6.0, 3.5, 2.0, and 1.0 with a total thiol concentration of 2.5 mM.  Ep: 
-0.91V and -1.08 V (b), -0.94 and -1.08 V (c), -0.94 and -1.09 V (d), -0.96 and -1.08 V (e), -0.99, and -1.08 (f), -1.05 V, -
1.10 and -1.14 V (g)). (h) HDT (Ep: -1.11 and -1.17 V). (Electrolyte: 0.5 M KOH, Geometric surface area of electrode: 0.6 
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cm2, scan rate: 50 mV/sec).  In comparison with the single wave characteristic at the less negative potential (Ep = -0.89 V) 
for MUA monolayer, HDT monolayer features a double-wave character at the more negative potential (h), -1.11 V and -1.17 
V, which is consistent with earlier finding[3] on the voltammetric desorption potentials as a function of the number of carbons 
(n) in the alkyl chain.  

(A)  (B)
Fig. S2 Voltammetric curves: (A) (a) FTP (Ep (FTP) = -0.60 V), (b) FTP/MHA (FTP/MHA mixing ratio: 25 with a total thiol 
concentration of 3.5 mM (Ep (FTP)= -0.68 V and Ep (MHA)= -1.0 V)), and (c) MHA (Ep (MHA)= -1.06 V).  (B) (a) MBA 
(Ep (MBA)= -0.57 V), (b) MBA/MHA (MBA/MHA mixing ratio: 20 and a total thiol concentration of 3.4 mM (Ep (MBA)= -
0.78 V and Ep (MHA)= -0.99 V)), and (c) MHA (Ep (MHA)= -1.06 V). (Electrolyte: 0.5 M KOH, Geometric surface area of 
the electrode: 0.6 cm2, and Scan rate: 50 mV/sec).

(A)  (B)
Fig. S3 (A) Plot of the reductive desorption potentials (Ep) obtained from the experiments for the different pairs of molecules 
studied in this work. (Ep(Ag/AgCl)).  (B) Reductive desorption potentials (Ep) estimated based on literature reports for different 
thiolate molecules on gold surfaces: FTP’s Ep(SCE) = -0.73 V (based on fitting[2]); MHA’s Ep(SCE) = -1.15 V (based on 
fitting[2]); MBA’s Ep(SCE) = -0.63 V[4]; TP’s Ep(SCE) = -0.58V[5]; ET’s Ep(SCE) = -0.75 V[6]; MUA’s Ep(SCE) = -1.08 V (based on 
fitting[2]); and HDT’s Ep(SCE) = -1.25 eV (based on fitting[2]).  Note that the potential is give in Ep(Ag/AgCl), which is - 0.05 V 
with respect to Ep(SCE).
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(A)                                      (B)

Scheme S1. Simulation models of the nanoelectrode arrays: disk-shaped (A) and strip-shaped (B) models.  Simulation of 
nanoelectrode array is based on the dimensionless equation of current (i) ~ potential (E) derived by Amatore et 
al.[7]: 
For disk-type:

                                                                                                       (1)r ra  0
1 21( ) /

For stripe-type:
                                                                                                           (2)r ra  0 1( )

Dimensionaless equation of current ~ potential:
         (3)                 ( ) exp( ) ( ) ( ) exp( )1 1 2 1 2 1    I r f I r f

where
                                                                                                             (4)r r

DRT
Fa












1 2/

                                                                                                              (5) 






k

RT
DF0

1 2



/

                                                                                                       (6)   
F

RT
E E( )0

                                                                                                                (7) 
F

RT
t

                                                                                                  (8)








i

FAC
DF
RT

0
1 2 /

                                                                                            (9)I d





1
1 2

0  




( ) /

The f (1-θ) function is 
  for disk-type                                                                  (10)f ( ) . ( ) /1 0 3 1 1 2    

and 
  for stripe-type                                                           (11)f ( ) ln sin( )1 1

1
2

1   














4

(A)                                      (B) 
Fig. S4  Theoretical modeling results for the reduction of Fe(CN)6

3- on the perforated MUA/HDT (A) and MBA/MHA (B).  
(A) The comparison of experimental data (lines) from Fig. 4A (c) with the simulation (points) in strip-model using ra= 1.23 
nm, R0= 2.05×104 nm (1- =6.0×10-5), D= 1.12×10-6 cm2/s, and k =2.  (B) The comparison of experimental data (lines) from 
Fig. 4A (d) with the simulation (points) in strip-model using ra= 2.74 nm, R0= 6.09×103 nm (1- =5.0×10-4), D= 1.12×10-6 
cm2/s, and k =2.  

Fig. S5  Theoretical modeling results for reduction of Ru(NH3)6
3+ at three different pH values on the perforated MBA/MHA 

system.  The comparison of experimental data (lines: a, b, and c) from (Fig. 4B (b-d)) with the simulation (points: a’, b’, and 
c’) in strip-model using ra= 0.5 nm, R0= 5.57×104 nm (1- =8.0×10-1), D= 7.5×10-6 cm2/s, and k= 2 for pH~3.4 (a); ra= 0.9 
nm, R0= 3.75×104 nm (1- =2.5×10-5), D= 1.1×10-5 cm2/s, and k= 2 for pH~6.0 (b); and ra= 0.4 nm, R0= 3.75×104 nm (1- 
=1.03×10-4), D= 1.7×10-5 cm2/s, and k= 2 for pH~10.3 (c).   

Table S2. Summary of parameters for nanoelectrode array simulation (disk-model Fig. 4D-E).
 Perforated Film ra (nm) R0 (nm) 1-θ itheory (μA) isimulated (μA) Nμ

(i) Fe(CN)6
3- MUA/HDT 2 482 8.62×10-6 3.21×10-7 3.08×10-7 4.39×107

(ii) Fe(CN)6
3- MBA/MHA 20 1950 1.05×10-4 3.21×10-6 3.07×10-6 5.35×106

(iii) Ru(NH3)6
3+ MBA/MHA 7.5 2160 1.21×10-5 7.53×10-6 5.71×10-6 4.38×106

Note: Data for i, ii and iii are the data from Fig. 4D (a), 4D (b) and 4E (b). itheory = 4nFDC0 ra; isimulated = Ilim / #N where Nμ= 
Atotal/Asingl=AT/R0

2 = AT(1-)/ra
2, AT = 0.64 cm2.  (see Fig. S6 for single nanoelectrode limiting current.)
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(A)                                                (B)  
Fig. S6 Comparison between the experimental (line) and simulated (point, disk-model) steady state limiting current based on 
eqn. 5. (A) Perforated MUA/HDT, (B) perforated MBA/MHA monolayer (Electrolyte: 1 M KCL with 1.3 mM Fe(CN)6

3-). 
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