## **Supporting Information**

## Engineering oxygen vacancies on dendrite-like IrO<sub>2</sub> for oxygen evolution reaction in acid solution

Chao Cai, Shaobo Han, Yongliang Tang\*

School of Physical Science and Technology, Southwest Jiaotong University, 610031,

Chengdu, China

Corresponding author: tyl@swjtu.edu.cn

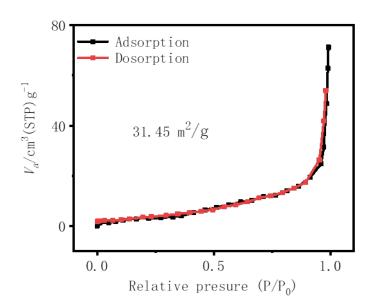



Figure S1. N<sub>2</sub> adsorption-desorption isotherms of IrO<sub>2</sub> DLNs (650 12 h).

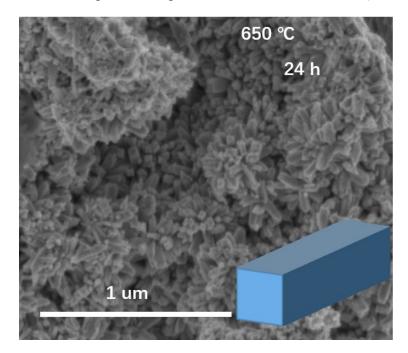



Figure S2. IrO<sub>2</sub> DLNs prepared at 650  $^\circ C$  with ageing time of 24 h.

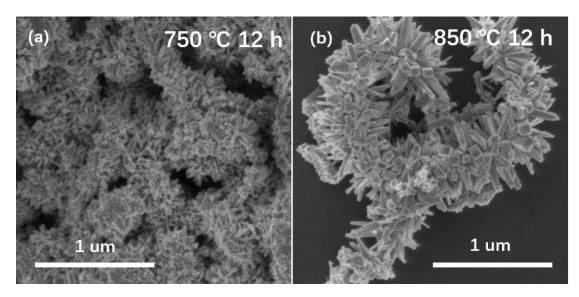



Figure S3. IrO<sub>2</sub> DLNs prepared at different temperature with ageing time of 12 h.

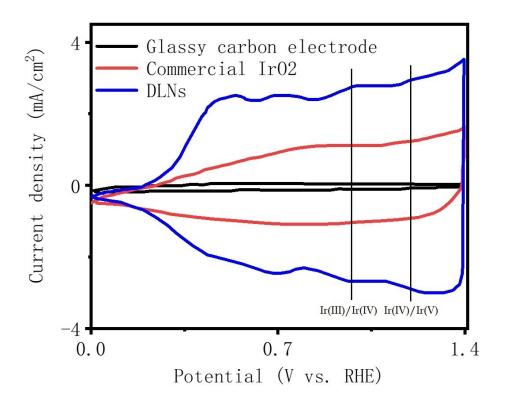



Figure S4. CV curve of support, Commercial  $IrO_2$  and  $IrO_2$  DLNs (650 12 h).  $IrO_2$  DLNs show two redox peaks, i.e., Ir(III)/Ir(IV) and Ir(IV)/Ir(V), located at +0.95 V and +1.23 V vs. RHE, respectively.

| Materials                                       | Electrolyte                          | Overpotential at<br>10 mA/cm <sup>2</sup> (mV)     | Tafel slopes<br>(mV/dec) | Mass<br>activity<br>(A/g)               | Ref. |
|-------------------------------------------------|--------------------------------------|----------------------------------------------------|--------------------------|-----------------------------------------|------|
| IrRuO3                                          | 0.5 M H <sub>2</sub> SO <sub>4</sub> | 308                                                | -                        | 27.45<br>A/g at<br>1.48 V<br>vs.<br>RHE | [1]  |
| Ir/Fe <sub>4</sub> /N                           | 0.5 M H <sub>2</sub> SO <sub>4</sub> | 316                                                | -                        | 77.6<br>A/g at<br>1.54 V<br>vs.<br>RHE  | [2]  |
| Ir<br>nanowires                                 | 0.5 M HClO <sub>4</sub>              | 270                                                | 43.6                     |                                         | [3]  |
| IrCoNi/C                                        | 0.5 M H <sub>2</sub> SO <sub>4</sub> | 305                                                | 53.8                     |                                         | [4]  |
| IrCu frame                                      | 0.1 M HClO <sub>4</sub>              | 293                                                | -                        |                                         | [5]  |
| Y <sub>2</sub> Ru <sub>2</sub> O <sub>7-x</sub> | 0.1 M HClO <sub>4</sub>              | 2.23 mA/cm <sup>2</sup> at<br>1.5 V <i>vs.</i> RHE | 55                       |                                         | [6]  |
| IrO <sub>2</sub><br>needles                     | 0.5 M H <sub>2</sub> SO <sub>4</sub> | 313                                                | 57                       |                                         | [7]  |
| IrO <sub>2</sub> DLNs                           | 0.5 M H <sub>2</sub> SO <sub>4</sub> | 270                                                | 43                       | 820 A/g                                 | This |

Table S1. Ir-based materials for OER in acid solution.

| at 1.55 | work |
|---------|------|
| V vs.   |      |
| RHE     |      |

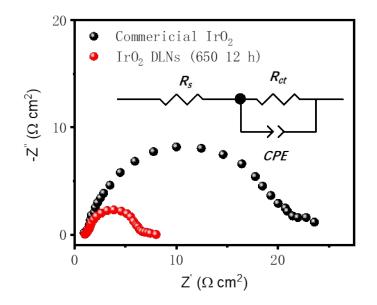



Figure S5. Nyquist plots of Commercial  $IrO_2$  and  $IrO_2$  DLNs (650 12 h). The EIS is measured at 1.5 V vs. RHE.

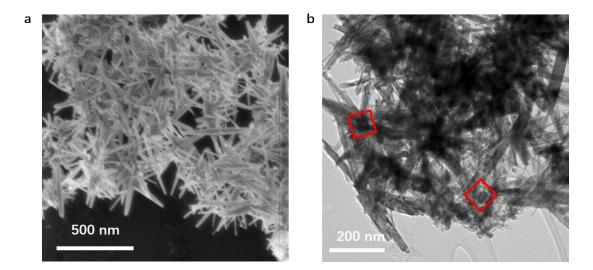



Figure S6. SEM (a) and TEM (b) image of  $IrO_2$  DLNs (650 12 h) after use.

## References

1. Park, S.-A., K.-S. Kim, and Y.-T. Kim, *Electrochemically Activated Iridium Oxide Black as Promising Electrocatalyst Having High Activity and Stability for Oxygen Evolution Reaction*. ACS Energy Letters, 2018. **3**(5): p. 1110-1115.

 Tackett, B.M., et al., *Reducing Iridium Loading in Oxygen Evolution Reaction Electrocatalysts Using Core–Shell Particles with Nitride Cores.* ACS Catalysis, 2018.
8(3): p. 2615-2621.

3. Fu, L., et al., *Ultrathin Ir nanowires as high-performance electrocatalysts for efficient water splitting in acidic media*. Nanoscale, 2018. **10**(4): p. 1892-1897.

4. Feng, J., et al., Iridium-Based Multimetallic Porous Hollow Nanocrystals for Efficient Overall-Water-Splitting Catalysis. Adv Mater, 2017. **29**(47).

 Kwon, T., et al., Cobalt Assisted Synthesis of IrCu Hollow Octahedral Nanocages as Highly Active Electrocatalysts toward Oxygen Evolution Reaction.
Advanced Functional Materials, 2017. 27(7): p. 1604688.

6. Kim, J., et al., *High-Performance Pyrochlore-Type Yttrium Ruthenate Electrocatalyst for Oxygen Evolution Reaction in Acidic Media.* J Am Chem Soc, 2017. **139**(34): p. 12076-12083.

7. Lim, J., et al., *Ultrathin IrO2 Nanoneedles for Electrochemical Water Oxidation*. Advanced Functional Materials, 2018. **28**(4): p. 1704796.