Supporting Information

Tiny amounts of fluorinated carbon nanotubes remove sodium

dendrite for high-performance sodium-oxygen batteries

Yangjun Mao,^a Hao Cheng,^a Jian Xie,^{*a,b} Wenquan Zheng,^c Genlin Zhang^c and Xinbing Zhao^{a,b}

^a State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China. E-mail: xiejian1977@zju.edu.cn; Fax: +86-571-87951451; Tel: +86-571-87952181

^b Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, Hangzhou 310027, P. R. China

^c Shanghai Han Xing Science and Technology Co., Ltd., Shanghai 201322, P. R. China

Fig. S1. SEM image of the commercial FCNTs.

Fig. S2. (a) Raman spectrum of FCNTs, and (b) nitrogen adsorption/desorption isotherms and pore size distribution of FCNTs.

Fig. S3. Equivalent circuit for fitting of the Nyquist plots, where R_e represents ohm resistance of cell components, R_f and Q_1 correspond to surface film resistance and relaxation capacitance, R_{ct} and Q_2 represent the charge transfer resistance and double-layer capacitance, and Z_w is associated with the bulk diffusion of Na ions.

Sample	$R_{\rm e}(\Omega)$	$R_{\rm f}(\Omega)$	$R_{\rm ct}(\Omega)$	$R_{\text{surface}}(\Omega)$
bare Na, 5 th cycle	25.5	781.6	376.1	1157.7
bare Na, 20 th cycle	10.1	941.3	596.2	1537.5
bare Na, 50 th cycle	13.7	991.2	636.9	1628.1
Na/FCNTs, 5 th cycle	19.6	305.7	210.3	516.0
Na/FCNTs, 20th cycle	13.6	345.7	233.4	579.1
Na/FCNTs, 50 th cycle	11.5	475.7	383.6	859.3

TableS1. Fitting results of the Nyquist plots in Fig. 3e and f.

Fig. S4. SEM images of bare Na electrodes after (a, b) 30% and (c, d) 50% Na stripping, and SEM images of Na/FCNTs electrodes after (e, f) 30% and (g, h) 50% Na stripping at 1 mA cm⁻².

Fig. S5. F1s XPS spectra of the Na/FCNTs electrode surface close to separator, the cross section and the surface away from separator of Na/FCNTs electrode after 30% Na stripping at 1 mA cm⁻².

Fig. S6. XRD patterns of cathodes of the Na–O₂ cells at different states with Na/FCNTs anode.

Fig. S7. SEM images of cathodes of the Na–O₂ cells at different states with Na/FCNTs anode: (a) pristine state, (b) 100 mAh g^{-1} and (c) 500 mAh g^{-1} and (d) 1000 mAh g^{-1} discharge capacities, (e) 1000 mAh g^{-1} discharge capacity and 500 mAh g^{-1} charge capacity, (f) 1000 mAh g^{-1} discharge capacity and 900 mAh g^{-1} charge capacity, and (g) complete charge state (1000 mAh g^{-1} discharge capacity and 1000 mAh g^{-1} charge capacity).

Fig. S8. Nyquist plots of the Na–O₂ cells with Na/FCNTs anode at different states.

Sampla D (O	$P(\mathbf{O})$	$P(\mathbf{O})$	Q_1		P(0)	Q_2	
Sample	$\Lambda_{\rm e}(\Sigma 2)$	$R_{\rm f}(22)$	Y	п	$- \Lambda_{\rm ct}(\Omega 2)$	Y	n
Initial	16.4	256.6	7.9×10 ⁻⁶	0.76	1804.5	7.5×10-6	0.68
Discharge	25.6	274.1	6.0×10 ⁻⁶	0.91	7703.2	1.2×10 ⁻⁶	0.68
Charge	11.5	269.4	8.0×10 ⁻⁶	0.80	1928.4	8.1×10-6	0.64

TableS 2. Fitting results of the Nyquist plots in Fig. S8.

Fig. S9. Nyquist plots of the Na–O₂ cells with bare Na and Na/FCNTs anodes.

Q_2	
п	
0.68	
0.73	
-	

Table S3. Fitting results of the Nyquist plots in Fig. S9.

1			2		2
Catalyst	Anode	Current density	Specific capacity	Cycle number	Reference
δ-MnO ₂	Na/FCNT s	400 mA g ⁻¹ (0.16 mA cm ⁻²)	1000 mAh g ⁻¹ (0.4 mAh cm ⁻²)	112	This work
NiCo ₂ O ₄ /Ni	Na foil	50mA g ⁻¹	$401 \text{ mAh } \text{g}^{-1}$	10th	[1]
Pd/ZnO/C	Na foil	33 mA g ⁻¹	0.15 mAh cm^{-2}	15	[2]
CNT/Co ₃ O ₄	Na foil	300 mA g^{-1}	300 mAh g^{-1}	21	[3]
CaMnO ₃ /C	Na foil	200mA g ⁻¹	1000mAh g ⁻¹	80	[4]
m-Ru-B-rGO	Na foil	0.05 mA cm ⁻²	0.5 mAh cm ⁻²	100	[5]
CNT/Ru	Na foil	0.191 mA cm ⁻²	0.38 mAh cm ⁻²	110	[6]
C@NiCo2O4	Na foil	100 mA g ⁻¹	$800 \text{ mAh } \text{g}^{-1}$	120	[7]
MnCo ₂ O ₄ /C	Na foil	0.05 mA cm^{-2}	1000 mAh g ⁻¹	130	[8]
h-Co ₃ O ₄ @MnCo ₂ O _{4.5} Ns	Na foil	100 mA g ⁻¹	1000 mAh g ⁻¹	135	[9]

Table S4. Comparison of electrochemical performance of Na–O₂ cells with different catalysts.

References

- 1 W. M. Liu, W. W. Yin, F. Ding, L. Sang and Z. W. Fu, *Electrochem. Commun.*, 2014, 45, 87–90.
- L. Ma, D. Z. Zhang, Y. Lei, Y. F. Yuan, T. P. Wu, J. Lu and K. Amine, ACS Energy Lett., 2018,
 3, 276–277.
- Q. Sun, J. Liu, X. Li, B. Q. Wang, H. Yadegari, A. Lushington, M. N. Banis, Y. Zhao, W. Xiao,
 N. Chen, J. Wang, T. K. Sham and X. L. Sun, *Adv. Funct. Mater.*, 2017, 27, 1606662.
- Y. X. Hu, X. P. Han, Q. Zhao, J. Du, F. Y. Cheng and J. Chen, *J. Mater. Chem. A*, 2015, **3**, 3320–3324.
- 5 F. Wu, Y. Xing, J. N. Lai, X. X. Zhang, Y. S. Ye, J. Qian, L. Li and R. J. Chen, *Adv. Funct. Mater.*, 2017, **27**, 1700632.
- 6 J. H. Kang, W. J. Kwak, D. Aurbach and Y. K. Sun, J. Mater. Chem. A, 2017, 5, 20678–20686.
- 7 Y. Z. Liu, X. W. Chi, Q. Han, Y. X. Du, J. H. Yang and Y. Liu, J. Alloys Compd., 2019, 772,

693-702.

- 8 M. S. Shang, Y. Liu, J. Xia, S. M. Zhang and J. H. Yang, Ceram. Int., 2017, 43, 3218–3223.
- 9 Y. Z. Liu, X. W. Chi, Q. Han, Y. X. Du, J. Q. Huang, X. H. Lin and Y. Liu, *Nanoscale*, 2019, 11, 5285–5294.

Information for videos

- Video-1 Dynamic changes of the Na/FCNTs electrode at 2 mA cm⁻².
- **Video-2** Dynamic changes of the bare Na electrode at 2 mA cm⁻².