How One-photon can Induce Water Splitting into Hydrogen peroxide and Hydrogen by Aluminum Porphyrins? Rationale of the Thermodynamics

Fazalurahman Kuttassery, Siby Mathew, Hiroshi Tachibana, Haruo Inoue* Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, Japan Email: <u>inoue-haruo@tmu.ac.jp</u>

SI-1. Estimation of excitation energy (E_{00}) from the crossing wavelength of absorption spectra (Q-band) and fluorescence spectra of AITMPyP(O^{-})₂ species under pH 12.5 condition.

SI-2. Estimation of saturated catalytic current from the plot between i_c vs. scan rate plot under different temperature (T= 295-346K) at pH 12.5 ([AITMPyP] = 0.2mM, [NaOAc] = 0.1M)

SI-3. Extraction of k_{H2O} and k_{OH} for AITMPyP(OH)₂ species under pH range 7.0-9.0

SI-4. Temperature dependent cyclic voltammogram of AITMPyP in NaOH/NaOAc condition at pH 11.0 and **50mM** Na₂CO₃ / NaOAc condition

Figure S1. Estimation of excitation energy (E_{00}) from the crossing wavelength of absorption spectra (Q-band) and fluorescence spectra of AITMPyP(O⁻)₂ species under pH 12.5 condition.

Figure S2. Estimation of saturated catalytic current from the plot between i_c vs. scanrate plot under different temperature (T= 295-346K) at pH 12.5 ([AITMPyP] = 0.2mM, [NaOAc] = 0.1M).

Figure S3. (a) Estimation of activation energy by Arrhenius treatment for k_{H20} at T = 295K -346K (pH= 7.0-9.0) and (b) k_{OH} at T = 295K -346K (pH= 7.0-9.0).

Figure S4. Temperature dependent cyclic voltammogram of AITMPyP in **(a)** NaOH/NaOAc condition at pH 11.0 **(b)** 50mM Na₂CO₃ / NaOAc condition at pH 10.9 and activation energy determined using Arrhenius plot between j² versus 1/T **(c)** NaOH/NaOAc condition at pH 11.0, **(d)** 50mM Na₂CO₃ / NaOAc condition at pH 10.9. (WE: BDD, RE: Ag/AgCl, CE:Pt, Scan rate – 100 mV/s).

pH AITMPyP Species $E_a^{apparant}$ (kJ.	mol ⁻¹)
7.0 AITMPyP(OH) ₂ 50.7	
8.0 AITMPyP(OH) ₂ 48.1	
9.0 AITMPyP(OH) ₂ 46.8	
9.8 AITMPyP(OH)(O ⁻) 42.4	
11.0 AITMPyP(O ⁻) ₂ 33.4	
11.5 AITMPyP(O ⁻) ₂ 31.7	
12.0 AITMPyP(O ⁻) ₂ 27.6	
12.7 AITMPyP(O ⁻) ₂ 19.8	

Table S1. Estimation of apparent activation energies of AITMPyP species under different pH conditions (pH 7.0-12.7)