Supporting Information (SI):

Nanoporous NiAl-LDH nanosheet arrays with optimized Ni active sites for efficient electrocatalytic alkaline water splitting

Liangliang Feng,^{*ab} Yingying Du, ^a Jianfeng Huang,^{*a} Liyun Cao,^a Li Feng,^a Yongqiang Feng,^a Qianqian Liu,^a Dan Yang^a and Koji Kajiyoshi^{*b}

^a School of Materials Science & Engineering, Xi'an Key Laboratory of Green Processing for Ceramic materials, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi'an Shaanxi, 710021, P.R. China.

^b Research Laboratory of Hydrothermal Chemistry, Faculty of Science and Technology, Kochi University, Kochi, 780-8520, Japan.

E-mail: fengll@sust.edu.cn; huangjf@sust.edu.cn; kajiyosh@kochi-u.ac.jp

Fig. S1 (A) Electrochemical etching process; (B) OER polarization curves and (C) the long-term HER durability test of NiAl-LDH/NF in alkaline media (1 M KOH solution).

Fig. S2 The contents of Ni and Al species in the electrolyte as a function of electrocatalysis time at an applied potential of 1.56 V.

Fig. S3 (A-C) SEM images of np-NiAl-LDH/NF; (D-F) SEM images of NiAl-LDH/NF.

Fig. S4 (A) AFM image and (B) the corresponding height profile of np-NiAl-LDH/NF.

Fig. S5 (A-C) TEM images; (D,E) HRTEM images; and (F) the corresponding SAED pattern of NiAl-LDH/NF.

Fig. S6 The elemental mapping images of NiAl-LDH/NF.

Fig. S7 (A) XRD patterns; (B) Raman spectra of NiAl-LDH powder, NiAl-LDH/NF and np-NiAl-LDH/NF and (C) the partially enlarged XRD pattern of np-NiAl-LDH/NF.

Fig. S8 Al 2p XPS high-resolution spectra of NiAl-LDH/NF and np-NiAl-LDH/NF.

Fig. S9 (A-C) SEM images of np-NiAl-LDH/NF after 100 h-electrocatalytic HER test.

Fig. S10 (A) TEM image; (B) SAED pattern; and (C-D) High-resolution TEM images of np-NiAl-LDH/NF after 100 h-long electrocatalysis for HER.

Fig. S11 (A-C) SEM images of np-NiAl-LDH/NF after 100 h-electrocatalytic OER test.

Fig. S12 (A,B) TEM images and (C) the corresponding elemental mapping images of np-NiAl-LDH/NF after 100 h-long electrocatalysis for OER.

Fig. S13 High-resolution Al spectra of np-NiAl-LDH/NF and np-NiAl-LDH/NF after long-term catalytic OER stability test for 100 h.

Atomic %	NiAl-LDH/NF	np-NiAl-LDH/NF
Ni	43.28	51.04
Al	18.11	13.02
Ni/Al	2.39	3.92

 Table S1. The Ni and Al contents were obtained from the EDX results of NiAl-LDH/NF and np-NiAl-LDH/NF.

Table S2. Comparison of the contents for four oxygen species from the fitting O 1s XPS spectra

Oxygen species	NiAl-LDH/NF	np-NiAl-LDH/NF	
adsorbed water (H ₂ O)	25.61%	32.09%	
hydroxyl group (–OH)	25.85%	23.50%	
oxygen vacancy (V _O)	17.34%	28.74%	
metal–oxygen (M–O)	31.21%	15.67%	

Catalyst	Electrolyte	Overpotential at the corresponding <i>j</i>	Stability test (h)	Tafel slope	Reference
np-NiAl-LDH/NF	1 М КОН	~90@10 mA/cm ² ~200@100 mA/cm ²	40	72	This work
NiAl-LDH/MoS ₂	1 M KOH	220@10 mA/cm ² ~335@100 mA/cm ²	10	82	ACS Energy Lett. 2018, 3, 952-960
Ni@NiFe LDH	1 M KOH	92@10 mA/cm ² 233@100 mA/cm ²	24	72.3	J Mater Chem A. 2019, 7(38), 21722- 21729
CoFe@NiFe/NF	1 M KOH	240@10 mA/cm ²	30	46	Appl Catal B- Environ. 2019, 253, 131-139
Fe-Ni LDH/NF	1 M KOH	127@10 mA/cm ² 257@50 mA/cm ²	14	109.4	ACS Sustain Chem Eng. 2019, 7(17), 15073-15079
NiCo ₂ O ₄ @Ni _x Co _{y-} LDH/NF	1 М КОН	193@10 mA/cm ²	24	1	ACS Sustain Chem Eng. 2019, 7(5), 4784-4791
Ni _{1-x} Fe _x LDH/NF	1 М КОН	170@10 mA/cm ² ~260@50 mA/cm ²	36	83	ACS Appl. Mater. Interfaces. 2018, 10(49). 2245
Ni ₁ Cr ₁ LDH/NF	1 M KOH	83@10 mA/cm ²	30	61	Nanoscale. 2018, 41(10), 19484- 19491
CoSe/NiFe-LDH/NF	1 М КОН	260@10 mA/cm ²	10	/	Chem. Commun. 2016, 52, 908
NiAlCo-LDH	1 М КОН	475 @10 mA/cm ²	/	52.4	Appl Surf Sci. 2016, 370, 445-451
NiCo-LDH/NF	1 М КОН	162@10 mA/cm ²	20	141	Dalton T. 2017, 14, 8372-8376
NiFe LDH@ NiCoP/NF	1 М КОН	120@10 mA/cm ²	100	2	Adv. Funct. Mater. 2018, 28, 1706847
AINi-LDH	1 M KOH	~200@10 mA/cm ² ~290@100 mA/cm ²	7	130	ACS Energy Letter. 2018, 3(4), 9871-9876

Table S3. Comparison of electrocatalytic performance of np-NiAl-LDH/NF with other recently reported Ni-based LDH catalysts for the HER in alkaline media.

Table S4. Comparison of the electrocatalytic performance of np-NiAl-LDH/NF with	th recently
reported Ni-based electrocatalysts for the OER in alkaline media.	

1		2		
Catalyst	Electrolyte	Overpotential at the corresponding <i>j</i>	Stability test (h)	Reference
np-NiAl-LDH/NF	1 М КОН	~180@10 mA/cm ² ~320@100 mA/cm ²	60	This work
Ni@NiFe LDH	1 М КОН	218@10 mA/cm ² 269@100 mA/cm ²	24	J Mater Chem A. 2019, 7(38), 21722- 21729
CoFe@NiFe/NF	1 М КОН	190@10 mA/cm ²	30	Appl Catal B- Environ. 2019, 253, 131-139
NiAl-LDH/MoS ₂	1 М КОН	~310@10 mA/cm ²	15	ACS Energy Lett. 2018, 3, 952-960
NiFeAl LDHs	1 М КОН	260@10 mA/cm ²	10	Nano Res. 2018, 11, 4524-4534
FeNi LDH/NF	1 М КОН	193@10 mA/cm ² 306@50 mA/cm ²	25	ACS Sustain Chem Eng. 2019, 7(17), 15073-15079
NiCo ₂ O ₄ @Ni _x Co _y LDH /NF	1 М КОН	115@10 mA/cm ²	24	ACS Sustain Chem Eng. 2019, 7(5), 4784-4791
Ni ₂ Cr ₁ LDH/NF	1 М КОН	390@100 mA/cm ²	20	Nanoscale. 2018, 41(10), 19484-19491
AlNi-LDH	1 М КОН	~320@100 mA/cm ²	7	ACS Energy Letter. 2018, 3(4), 9871- 9876
N-NiAl-LDH	1 М КОН	~400@100mA/cm ²	6	J Mater Chem A. 2018, 6, 23283- 23288
Ni _{1-x} Fe _x LDH/NF	1 М КОН	106@10mA/cm ²	36	ACS Appl. Mater. Interfaces. 2018, 10(49), 2245

 Table S5. Comparison of the electrocatalytic performance of np-NiAl-LDH/NF with recently

Catalyst	Electrolyte	Cell voltage (mV)	Stability test (h)	Reference
np-NiAl-LDH/NF	1 М КОН	1.5@10 mA/cm ² 1.75@100 mA/cm ²	55	This work
Ni@NiFe LDH	1 М КОН	1.53@10 mA/cm2 1.78@100 mA/cm2	24	J Mater Chem A. 2019, 7(38), 21722- 21729
CoFe@NiFe/NF	1 М КОН	1.59@10 mA/cm2	24	Appl Catal B- Environ. 2019, 253, 131-139
NiAl-LDH/MoS ₂	1 М КОН	1.5@10 mA/cm2	10	ACS Energy Lett. 2018, 3, 952-960
AlNi-LDH	1 М КОН	1.58@100 mA/cm ²	7	ACS Energy Letter. 2018, 3(4), 9871-9876
Co ₉ S ₈ @NiCo LDH/NF	1 М КОН	1.6@10 mA/cm ²	10	Sci Bull. 2019, 60–66
Ni ₃ S ₂ @NiV-LDH	1 M KOH	1.53@10 mA/cm ²	160	Nanoscale. 2019, 7585-7591
Fe-Ni LDH/NF	1 М КОН	1.65@10 mA/cm2 1.73@100 mA/cm2	20	ACS Sustain Chem Eng. 2019, 7(17), 15073-15079
NiCo2O4@NixCoy LDH/NF	1 М КОН	~1.63@10 mA/cm ²	24	ACS Sustain Chem Eng. 2019, 7(5), 4784-4791
Ni _{1-x} Fe _x LDH	1 М КОН	1.59@10 mA/cm ²	24	ACS Appl. Mater. Interfaces. 2018, 10(49), 2245
Ni ₂ Cr ₁ LDH/NF	1 М КОН	1.55@10 mA/cm ²	30	Nanoscale. 2018, 41(10), 19484-19491

reported Ni-based LDH catalysts for overall water splitting in alkaline media.