Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Synthesize Ternary and Microspheres Structure of SiO_x@SnO₂@C by

Hydrothermal Method as Anode for High Performance Lithium-Ion

Batteries

Zhiqiang Gu^a, Wenli Li^a, Yuxi Chen^a, Xiaohong Xia^a, Hongbo Liu^{a,b*}

a. College of Materials Science and Engineering, Hunan University, Changsha, China

b. Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology,

Hunan University, Changsha, Hunan, 410082, China

Figure S1. Color of the mixed solution at initial (a) and after aging for 4 h at 60 °C (b).

Figure S2. The XRD pattern of SiO_x@SnO₂@C carbonized at 650 °C for 3 h (a), and the corresponding cyclic

performance (b).

Figure S3. SEM images of pristine Si nanoparticles (a), and Si@C composites (b).

Figure S4. N2 adsorption/desorption isotherms (a), DFT pore size distribution curves (b), TGA plots (c) of

SnO₂@C and SiO_x@SnO₂@C composites, respectively.

Figure S5. CV-curves of SnO₂@C (a), SiO_x@SnO₂@C (b) and Si@C (c) composites from 0.001 to 3 V at a scan

rate of 0.1 mV s⁻¹ for the first three cycles, Charge and discharge voltage profiles of SnO₂@C for first cycle (d).

Figure S6. SEM image (a) and TEM image of SiO_x@SnO₂@C electrode after 300th charge/discharge.

		cycles.		
Sample	R_{ct} -1 (Ω)	R _{ct} -100 (Ω)	Charge state-1 (V)	Charge state-100
				(V)
SnO ₂	62	28	2.76	2.46
SiO _x @SnO ₂ @C	163	45	2.98	2.54
Si@C	70	42	3.03	1.62

 $Table \ S1 \ the \ R_{ct} \ value \ and \ corresponding \ charge \ state \ of \ SnO_2, \ SiO_x @SnO_2 @C \ and \ Si@C \ of \ initial \ and \ after \ 100$