Supporting Information

Formation of cobalt phosphide nanodisks as a bifunctional electrocatalyst for enhanced water splitting

Lvlv Ji, *a Huifang Zheng, a Yue Wei, a Yeting Fang, a Jialei Du, b Tao Wang and

Sheng Wang*a

^a School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China

^b Institute for Advanced Interdisciplinary Research, University of Jinan, Jinan 250022, China

*Corresponding author, E-mail: llji@zstu.edu.cn; wangsheng571@hotmail.com

EXPERIMENTAL

Materials. Cobalt chloride (99.9%), potassium hexacyanocobaltate(III) (99%), ammonia solution (AR, 28~30%), sodium hypophosphite (99%), potassium hydroxide (99.999%) and RuO₂ (99.9%) were purchased from MACKLIN Reagent Co. 20 wt% Pt/C was purchased from Alfa Aesar Chemical Reagent Co. High-purity argon gas (99.999%) was purchased from Shanghai Gases Co. All other chemical reagents were of analytical grade and used as received without further purification. All electrolyte solutions were prepared by Milli-Q ultrapure water (> 18 MΩ).

Apparatuses. Scanning electron microscopy (SEM) images and energy dispersive Xray analysis (EDX) data were obtained at Hitachi S-4800 (Hitachi, Japan) equipped with a Horiba EDX system (X-max, silicon drift X-Ray detector). SEM images were obtained with an acceleration voltage of 5 kV and EDX spectrum was obtained with an acceleration voltage of 15 kV. Transmission electron microscopy (TEM) images, highresolution TEM (HRTEM) images and selected area electron diffraction (SAED) patterns were obtained at JEM-2100, JEOL.

Powder X-ray diffraction (XRD) was conducted by Bruker Foucs D8 *via* ceramic monochromatized Cu Kα radiation of 1.54178 Å, operating at 40 kV and 40 mA. FT-IR spectra were measured on a Nicolet 6700 spectrometer (Thermo Fisher Nicolet, USA) with KBr pellets. Raman spectra were measured on a confocal microscope laser Raman spectrometer (Rainshaw invia). The Brunauer-Emmett-Teller (BET) specific surface areas of the samples were measured on a TRISTAR 3020 by nitrogen adsorption at 77.4 K.

X-ray photoelectron spectroscopy (XPS) for elemental analysis was measured on a Kratos Axis Ultra DLD X-ray Photoelectron Spectrometer using 100 W monochromated Al K α radiation as the X-ray source for excitation. The 500 μ m X-ray spot was used for XPS analysis. The base pressure in the analysis chamber was about 3×10^{-10} mbar. The C 1s peak (284.6 eV) was used for internal calibration.

Electrochemical measurements were conducted on a CHI 660E electrochemical workstation (Chenhua Corp., Shanghai, China).

Synthesis of Co-Co PBA NCs. The synthesis of $Co_3[Co(CN)_6]_2$ nanocubes (Co-Co PBA NCs) follows a precipitation method. Briefly, cobalt chloride (0.6 mmol) and sodium citrate (0.9 mmol) were firstly dissolved in 20 ml H₂O to form solution A, and potassium hexacyanocobaltate(III) (0.4 mmol) was dissolved in 20 ml H₂O to form solution B. Then, the solution A and solution B were mixed by magnetic stirring for 3 min. After that, the reaction was carried out at 3-5 °C undisturbed for 24 h. The product was collected by filtration and washed with deionized water and ethanol for several times. The obtained pink powder Co-Co PBA NCs was dried in a vacuum oven at 60 °C for 24 h.

Synthesis of Co-Co PBA NDs, Co-Co PBA ET-2 and Co-Co PBA ET-4. In the typical synthesis procedure, 6 ml ammonia solution (28~30%) was mixed with 15 ml H₂O to form solution A, and Co-Co PBA NCs (20 mg) was dispersed in 10 ml ethanol to form solution B. Then, the solution A and solution B was mixed and stirred for 10 min at room temperature. The etched powder sample was collected by filtration and washed with abundant deionized water until the pH of filtrate reaching 7. The obtained

Co-Co PBA NDs was dried in a vacuum oven at 60 °C for 24 h. In the parallel experiments, the Co-Co PBA ET-2 and Co-Co PBA ET-4 samples were prepared under identical conditions except that the added ammonia solution volume in solution A was 2 and 4 ml, respectively.

Synthesis of CoP NDs, CoP NCs, CoP ET-2 and CoP ET-4. In the typical synthesis procedure, Co-Co PBA NDs (20 mg) and NaH₂PO₂ (200 mg) were placed at two separate positions in a porcelain boat with NaH₂PO₂ powder at the upstream side of the tube furnace. The samples were annealed under an argon atmosphere at 300 °C for 2 h with a ramping rate of 2 °C min⁻¹. In the parallel experiments, the CoP NCs, CoP ET-2 and CoP ET-4 samples were prepared under identical conditions except that the precursors were Co-Co PBA NCs, Co-Co PBA ET-2 and Co-Co PBA ET-4, respectively.

Electrochemical measurements. To prepare the working electrode, the electrocatalyst (4 mg) and 5 wt% Nafion solution (80 µl) were dispersed in 1 ml of 4:1 (v/v) water/ethanol. Then, the electrocatalyst suspension (5 µl) were dropped onto a glassy carbon electrode (mass loading ~ 0.265 mg cm⁻²), which was dried as working electrode. The three-electrode system consisted of a working electrode, a carbon rod counter electrode, and a saturated calomel reference electrode (SCE). The glass cell and Teflon cell were used for the electrochemical measurements in acidic and alkaline electrolyte, respectively. The potentials reported were referred to the Reversible Hydrogen Electrode (RHE) *via* the Nernst equation: $E_{RHE} = E_{SCE} + 0.059 \text{pH} + 0.244$. In 0.5 M H₂SO₄, $E_{RHE} = 0.273 \text{ V} + E_{SCE}$; in 1 M KOH, $E_{RHE} = 1.05 \text{ V} + E_{SCE}$. The HER

catalytic performance was examined in N2-saturated 0.5 M H2SO4 and 1 M KOH, respectively, whereas the OER catalytic performance was evaluated in O₂-saturated 1 M KOH. Unless stated otherwise, linear sweep voltammetry (LSV) was measured at a scan rate of 2 mV s⁻¹. The Tafel slope was obtained from the LSV plot using a linear fit applied to points in the Tafel region. Electrochemical impedance spectroscopy (EIS) measurements were conducted from 10^{-2} Hz to 10^{6} Hz with amplitude of 5 mV at different potentials. The electrochemical catalytic stability of the electrocatalyst was carried out by continuous cyclic voltammetry (CV) scanning and long-term electrolysis. The electrochemical double-layer capacitance (C_{dl}) of the electrocatalyst was determined by CV measurements under the potential range of 0.1 - 0.3 V vs. RHE with various scan rates in 0.5 M H₂SO₄. The resulting current density between the anodic and cathodic sweep at 0.2 V vs. RHE shows a linear dependence on the scan rate. C_{dl} can be evaluated from the slope of the linear plot. Unless stated otherwise, LSV and Tafel data plots were corrected with 90% iR compensation. The experiments were all performed at 22 ± 2 °C.

KOH Electrolyte Purification. In order to avoid the possible Fe contamination, the 1 M KOH electrolyte was purified according to the reported method (*J. Am. Chem. Soc.* **2015**, *137*, 3638). Firstly, Co(OH)₂ was prepared by the precipitation reaction between $Co(NO_3)_2$ (99.999%) and 0.1 M KOH (KOH, 99.999%) and washed three times with ultrapure water. Co(OH)₂ was then added into 1 M KOH electrolyte and stirred for 10 min to absorb the possible Fe impurities. The resultant 1 M Fe-free KOH electrolyte (supernatant) was obtained by centrifugation and used for electrochemical

measurements.

Figure S1. Enlarged SEM image of Co-Co PBA NCs with obtuse corners.

Figure S2. Large-area (A) SEM and (B) TEM image of Co-Co PBA NDs.

Figure S3. (A) XRD patterns and (B) FT-IR spectra of Co-Co PBA NCs, Co-Co PBA ET-2, Co-Co PBA ET-4 and Co-Co PBA NDs.

Figure S4. (A) XRD patterns and (B) Raman spectra of CoP NCs, CoP ET-2, CoP ET-4 and CoP NDs. The I_d/I_g peak intensity ratios obtained for CoP NCs, CoP ET-2, CoP ET-4 and CoP NDs are 0.82, 0.8, 0.83 and 0.79, respectively.

Figure S5. Enlarged TEM image of CoP NDs with numerous small pores.

Figure S6. (A, B, C) SEM images and (D, E, F) TEM images of CoP NCs, CoP ET-2,

CoP ET-4, respectively.

Figure S7. (A) N₂ adsorption/desorption isotherms and (B) pore size distribution plots of CoP NCs, CoP ET-2, CoP ET-4 and CoP NDs.

Figure S8. (A) XPS survey spectrum and (B) EDX spectrum of CoP NDs.

Figure S9. High-resolution XPS spectra of (A) Co 2p, (B) P 2p, (C) C 1s and (D) N 1s

of CoP NDs.

Figure S10. Nyquist plots of CoP NCs, CoP ET-2, CoP ET-4 and CoP NDs in 0.5 M

 H_2SO_4 under an overpotential of 150 mV for HER.

Figure S11. CVs of (A) CoP NCs, (B) CoP ET-2, (C) CoP ET-4 and (D) CoP NDs at different scan rates from 20 to 200 mV s⁻¹ under the potential window of 0.1 - 0.3 V *vs*. RHE in 0.5 M H_2SO_4 . (E) The capacitive current at 0.2 V as a function of scan rate for CoP NCs, CoP ET-2, CoP ET-4 and CoP NDs.

Figure S12. (A) XRD pattern, (B) TEM image and (C) HRTEM image of CoP NDs after 30 h electrolysis in 0.5 M H₂SO₄.

Figure S13. (A) The first, second, 9th and 10th CV scan of CoP NDs in 1 M KOH under the potential range of 1 - 1.5 V *vs*. RHE at 2 mV s⁻¹. High-resolution (B) Co 2p, (C) P 2p and (D) O 1s XPS spectra of the as-prepared CoP NDs and CoP NDs after 10 CV scans. (E) XRD pattern of CoP NDs after 10 CV scans.

Figure S14. Nyquist plots of CoP NCs, CoP ET-2, CoP ET-4 and CoP NDs in 1 M KOH under an overpotential of 340 mV for OER.

Electrocatalyst	Loading mass (mg cm ⁻²)	Substrate	η ₁₀ (mV)	b (mV dec ⁻¹)	Ref.
CoP NDs	0.265	GCE ^{a)}	126	54.5	This work
CoP@NG	0.283	GCE	158	63.8	<i>Electrochim. Acta</i> 2019 , 307, 543
CoP/Co ₂ P@NC-2	-	GCE	126	79	ACS Sustainable Chem. Eng. 2019 , 7, 8993
CoP/NCNHP	-	GCE	140	53	J. Am. Chem. Soc. 2018 , 140, 2610
PANI/CoP HNWs	0.8	CC ^{b)}	57	34.5	J. Am. Chem. Soc. 2018 , 140, 5118
CoP-CNTs	-	GCE	139	52	Small 2017, 13, 1602873
α -MoC _{1-x} /NC	-	GCE	142	74	ACS Sustainable Chem. Eng. 2019 , 7, 9637
NP-doped holey graphene	3	GCE	344	118	Adv. Sci.2019, 6, 1900119
NbS ₂ /CP	0.285	CP ^{c)}	90	125	ACS Appl. Mater. Interfaces 2019 , 11, 13205
FNC-MoS ₂	0.535	GCE	194	54	Carbon 2019, 150, 363
Co ₉ S ₈ @NOSC-900	0.28	GCE	235	72	Adv. Funct. Mater. 2017, 27, 1606585
3D-Co(16.4%)- MoS ₂ /G	0.5	GCE	143	71	Nano Energy 2019 , 61, 611
CE-TaS ₂	0.285	GCE	192	66	CrystEngComm 2019, 21, 3517
Zn _{1/3} Co _{2/3} MoS ₃ microboxes	-	GCE	160	85	ACS Sustainable Chem. Eng. 2019 , 7, 9800
W-W ₂ C/CNT-6	0.28	GCE	155	56	ACS Sustainable Chem. Eng. 2019 , 7, 10016
FeP/CN	1	GCE	104	63.5	Carbon 2019, 144, 764
B12/G800A	1.27	GCE	115	65	J. Mater. Chem. A 2019, 7, 7179
Fe doped NiS ₂	-	GCE	198	42	J. Mater. Chem. A 2019, 7, 4971
Ni@NC@MoS ₂	0.28	GCE	82	47.5	Small 2019, 15, 1804545
FePSe ₃ /NC	0.212	GCE	70	53	Nano Energy 2019 , 57, 222
Ni ₂ P@NPCNFs	-	CC	63.2	56.7	Angew. Chem. Int. Ed. 2018 , 57, 1963
N,P-Mo _x C NF	0.265	GCE	107	65.1	ACS Appl. Mater. Interfaces 2018 , 10, 14632
N-Doped a-MoS $_{\rm x}$	-	GCE	143	57	Nanoscale 2019, 11, 11217
Mo ₂ N-Mo ₂ C/HGr-3	0.337	GCE	157	55	Adv. Mater. 2018, 30, 1704156

Table S1. Comparison of HER activity of CoP NDs with recently reported noble-metal-

^{a)}GCE represents glassy carbon electrode; ^{b)}CC represents carbon cloth; ^{c)}CP represents carbon paper.

ree electrocatalysts in 1 M KOH.						
Electrocatalyst	Loading mass (mg cm ⁻²)	Substrate	η ₁₀ (mV)	b (mV dec ⁻¹)	Ref.	
CoP NDs	0.265	GCE	134	56.9	This work	
CoP@NG	0.283	GCE	182	59.6	<i>Electrochim. Acta</i> 2019 , <i>307</i> , 543	
CoP/Co ₂ P@NC-2	-	GCE	198	82	ACS Sustainable Chem. Eng. 2019 , 7, 8993	
CoNiP microspheres	-	GCE	145.8	52	J. Mater. Chem. A 2019, 7, 8602	
CoTeNR/NF	1.3	Ni foam	202	115	Small Methods 2019, 1900113	
CoP/NCNHP	-	GCE	115	66	J. Am. Chem. Soc. 2018 , 140, 2610	
EG/H-Co _{0.85} Se P	2.1	Graphite foil	150	83	Adv. Mater. 2017, 29, 1701589	
Co-Fe oxyphosphide	-	GCE	180	62	Adv. Sci. 2019, 1900576	
Co_3O_4/MoS_2	2	Ni foam	205	98	Appl. Catal. B-Environ. 2019, 248, 202	
NOPHC _x -900	0.28	GCE	290	102	Appl. Catal. B-Environ. 2019, 248, 239	
W-W ₂ C/CNT-6	0.28	GCE	147	51	ACS Sustainable Chem. Eng. 2019 , 7, 10016	
Mo ₂ N-Mo ₂ C/HGr-3	0.337	GCE	154	68	Adv. Mater. 2018, 30, 1704156	
Co ₉ S ₈ @NOSC-900	0.28	GCE	320	105	Adv. Funct. Mater. 2017 , 27, 1606585	
B12/G800A	1.27	GCE	130	77	J. Mater. Chem. A 2019, 7, 7179	
FePSe ₃ /NC	0.212	GCE	118.5	88	Nano Energy 2019 , 57, 222	
Cu-Ni nanocages	-	GCE	140	79	ACS Catal. 2019, 9, 5084	
α-MoC _{1-x} /NC	-	GCE	118	84	ACS Sustainable Chem. Eng. 2019 , 7, 9637	
CoCuP foam	-	Steel foil	138	48	ACS Sustainable Chem. Eng. 2019 , 7, 10734	
3D-NiCoP		Ni foam	105	79	Nano Res. 2019, 12, 375	
Co-Fe-P nanotubes	0.285	GCE	86	59	Nano Energy 2019 , 56, 225	
$(Fe_{0.048}Ni_{0.952})_2P$	1	Ni foam	103	76.6	Nano Energy 2019 , 56, 813	
Co4Ni1P NTs	0.19	GCE	129	52	Adv. Funct. Mater. 2017, 27, 1703455	
Cu _{0.3} Co _{0.27} P/NC	0.4	GCE	220	122	Adv. Energy Mater. 2017 , 7, 1601555	
VOOH nanospheres	0.8	Ni foam	164	104	Angew. Chem. Int. Ed. 2017, 56, 573	

Table S2. Comparison of HER activity of CoP NDs with recently reported noble-metal-

free electrocatalysts in 1 M KOH.							
Electrocatalyst	Loading mass (mg cm ⁻²)	Substrate	η_{10} (mV)	b (mV dec ⁻¹)	Ref.		
CoP NDs	0.265	GCE	318	49.1	This work		
CoP@NG	0.283	GCE	354	63.8	Electrochim. Acta 2019 , 307, 543		
Fe ₃ C@Fe,N,S-GCM	0.32	GCE	327	253.8	Carbon 2019, 150, 93		
CoNiS/PCNs	-	GCE	320	86	Carbon 2019, 149, 144		
CoNi-P-3DHFLM	0.127	GCE	292	84	Appl. Catal. B-Environ. 2019 , 249, 147		
r-CoFe	0.212	GCE	253	39	J. Mater. Chem. A 2019 , 7, 14011		
CoO _x -BPQDs	-	GCE	360	58.5	J. Mater. Chem. A 2019 , 7, 12974		
Geobacter/rGO	0.05	GCE	270	43	Chem. Mater. 2019, 31, 3686		
Mn-doped Co ₃ O ₄ nanoflakes	0.65	Ni foam	263	60	ACS Sustainable Chem. Eng. 2019, 7, 9690		
Co ₃ O ₄ @BP	-	GCE	400	63	ACS Appl. Mater. Interfaces 2019. 11. 17459		
NSFLGDY-900	0.8	GCE	299	62	J. Am. Chem. Soc. 2019 , 141, 7240		
Fe@BIF-91	0.23	GCE	351	71	Adv. Sci. 2019, 6, 1801920		
Co-P@NC-800	0.283	GCE	370	79	ACS Appl. Mater. Interfaces 2017 , 9, 40171		
CoP/NCNHP	-	GCE	310	70	J. Am. Chem. Soc. 2018 , 140, 2610		
CoMnO-600	-	GCE	337	82	Small 2017, 13, 1700468		
NiCoP/C nanoboxes	-	GCE	330	96	Angew. Chem. Int. Ed. 2017 , 129, 3955		
Co-C ₃ N ₄ /CNT	-	GCE	380	68.4	J. Am. Chem. Soc. 2017 , 139, 3336		
CoTe ₂ @NCNTFs	0.285	GCE	330	82.8	J. Mater. Chem. A 2018, 6, 3684		
G-Ni ₄ Fe/GF	0.05	Graphite foil	310	50	<i>Adv. Energy Mater.</i> 2018 , 1800403		
Mo ₂ C@CS	0.4	GCE	380	98	ChemSusChem 2017, 10, 3540		
Ni/Mo ₂ C-PC	0.5	GCE	368	-	Chem. Sci. 2017, 8, 968		
PPy/FeTCPP/Co	0.3	GCE	380	61	Adv. Funct. Mater. 2017 , 27, 1606497		
VOOH nanospheres	0.8	Ni foam	270	68	Angew. Chem. Int. Ed. 2017 , 56, 573		
Co ₉ S ₈ @NOSC-900	0.28	GCE	340	68	Adv. Funct. Mater. 2017, 27, 1606585		

Table S3. Comparison of OER activity of CoP NDs with recently reported noble-metal-

CoP ET-2 and CoP	oP ET-2 and CoP NCs.						
Electrocatalyst	Reaction	$\eta_{10}(\mathrm{mV})$	$b (\mathrm{mV \ dec^{-1}})$	Electrolyte			
	HER	126	54.5	0.5 M H ₂ SO ₄			
CoP NDs	HER	134	56.9	1 M KOH			
	OER	318	49.1	1 M KOH			
	HER	142	62.8	0.5 M H ₂ SO ₄			
CoP ET-4	HER	152	64.3	1 M KOH			
	OER	343	50.2	1 M KOH			
	HER	164	66.2	0.5 M H ₂ SO ₄			
CoP ET-2	HER	174	67.1	1 M KOH			
	OER	364	59.9	1 M KOH			
	HER	187	79.8	0.5 M H ₂ SO ₄			
CoP NCs	HER	199	82.3	1 M KOH			
	OER	388	73	1 M KOH			

Table S4. Summary of the HER and OER catalytic activities of CoP NDs, CoP ET-4,

1		2		
Electrocatalyst	Loading mass (mg cm ⁻²)	Substrate	Cell voltage for 10 mA cm ⁻²	Ref.
CoP NDs	2	СС	1.62	This work
CoTeNR/NF	1.3	Ni foam	1.64	Small Methods 2019 , 1900113
Co_9S_8/Ni_3S_2	-	Ni foam	1.64	<i>Appl. Catal. B-Environ.</i> 2019 , <i>253</i> , 246
NGCs	1.5	Ni foam	1.64	Carbon 2019, 150, 21
CoP@NCHNCs	1	Ni foam	1.62	ACS Sustainable Chem. Eng. 2019 , 7, 10912
NCMC	0.28	Carbon paper	1.63	Chem. Commun. 2019 , 55, 6515
Co-Fe oxyphosphide	-	Carbon paper	1.69	Adv. Sci. 2019, 1900576
CoFe@NiFe-200/NF	-	Ni foam	1.59	<i>Appl. Catal. B-Environ.</i> 2019 , <i>253</i> , 131
Ni ₃ ZnC _{0.7} /NCNT-700	0.8	Ni foam	1.66	Carbon 2019, 148, 496
Ni _{0.85} Se	2.55	Ti mesh	1.66	ChemSusChem 2019 , <i>12</i> , 2271
NiS ₂ /CoS ₂ /C	0.2	Carbon paper	1.61	<i>Chem. Commun.</i> 2019 , 55, 3781
Co_3S_4 (MoS_2	0.6	Carbon paper	1.58	Nano Energy 2018 , 47, 494
hierarchical Ni-Co-P HNBs	2	Ni foam	1.62	Energy Environ. Sci. 2018 , 11, 872
CoP/NCNHP	2	CFP	1.64	J. Am. Chem. Soc. 2018, 140, 2610
Ni/Mo ₂ C-PC	2	Ni foam	1.66	Chem. Sci. 2017, 8, 968
CoTe ₂ @NCNTFs	1	Ni foam	1.67	J. Mater. Chem. A 2018, 6, 3684
Mo ₂ C@CS	1	Ni foam	1.73	<i>ChemSusChem</i> 2017 , <i>10</i> , 3540
CoNPs@C	3.43	CC	1.65	ACS Appl. Mater. Interfaces 2017 , 9, 31913
PPy/FeTCPP/Co	0.5	CFP	1.81	Adv. Funct. Mater. 2017, 27, 1606497
CoS_2 NTA	1.2	CC	1.67	<i>Nanoscale Horiz.</i> 2017 , <i>2</i> , 342
Ni ₂ Fe ₁ -O	5.4	Ni foam	1.64	<i>Adv. Energy Mater.</i> 2018 , <i>8</i> , 1701347
WO ₂ HN/NF	1.57	Ni foam	1.59	J. Mater. Chem. A 2017 , 5, 9655
VOOH nanospheres	0.8	Ni foam	1.62	Angew. Chem. Int. Ed. 2017 , 56, 573
Co ₉ S ₈ @NOSC-900	5	Ni foam	1.6	Adv. Funct. Mater. 2017, 27, 1606585

Table S5. Comparison of the overall water splitting activity of CoP NDs with recently

 reported noble-metal-free electrocatalysts in 1 M KOH.