The Synergetic Effects of Multifunctional Citric Acid and Rice Husk Derived

Honeycomb Carbon Matrix on Silicon Anode for High-Performance Lithium Ion

Batteries

Supporting information

Yong Wang ^{a, b}, Hui Xu ^{a, b, *}, Xiaolan Wang ^{a, b}, Hong Jin ^{a, b, c *}, Yu Bai ^{a, b, *}

a State Key Laboratory for Mechanical Behaviour of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, People's Republic of China

b Xi'an Jiaotong University Suzhou Academy, Suzhou 215123, People's Republic of

China

c School of Science, MOE Key Laboratory for Non-Equilibrium Synthesis and

Modulation of Condensed Matter, Xi'an Jiaotong University, Xi'an, Shaanxi710049,

China

*E-mail: jhjinhong@mail.xjtu.edu.cn

Figure S1. a-c) SEM image of RH obtained at 400 °C, 500 °C and 600 °C.

Figure S2. SEM image of Si@CA@RH composite.

Figure S3. XRD patterns of commercial Si.

Figure S4. CV curves of Si@CA@RH at 0.1 mV s⁻¹ in the range of 0.01-1 V.

Figure S5. Nyquist plots of Si, Si@CA, Si@RH, Si@CA@RH electrode.

Figure S6. XPS spectra of Si@CA composite.

Figure S7. D_{Li}^+ of pure Si electrode with CMC binder during the discharge and charge processes.