Supporting Information

Performances Enhanced High-nickel Lithium Metal Batteries through Stabling Cathode and Anode Electrolyte Interfaces

Yang Liu^a, Mingshan Wang^a, Junchen Chen^a, Jun Yang^a, Kai Wang^b, Zhouhong Ren^b,

Wei Xi^{b*}, Yun Huang^a, Jianming Zheng^{c*}, Xing Li^{a*}

^a School of New Energy and Materials, Southwest Petroleum University, Chengdu,

Sichuan 610500, China

^b Center for Electron Microscopy and Tianjin Key Lab of Advanced Functional

Porous Materials, Institute for New Energy Materials & Low-Carbon Technologies,

School of Materials Science and Engineering, Tianjin University of Technology,

Tianjin 300384, China.

^c College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

Corresponding Authors:*(X.L) Tel: +86 28 83037409. Fax: +86 28 83037409. Emails: lixing@swpu.edu.cn, * E-mails: weiandna1234@163.com (W.X), zhjm@xmu.edu.cn (J.Z).

Figure S1 Cycling performances of Li||Li cells, tested at 0.5 mA cm⁻² and a charge/discharge capacity of 0.5 mAh cm⁻² using the LiPF₆ baseline electrolyte and Dual-salt + FEC electrolyte, respectively.

Figure S2(a), (b) Voltage *vs.* time curves for the Li||Cu cells, with insets showing selected enlarged curves, tested at 0.25 mA cm⁻² with a deposited capacity of 1.0 mAh cm⁻² using the LiPF₆ baseline electrolyte and Dual-salt + FEC electrolyte, respectively.

Figure S3 Calculated HOMO and LUMO values for EMC, EC, FEC, LiPF₆, LiTFSI and LiBOB.

Figure S4(a)-(b) HRTEM images of the fresh pristine high nickel NCM.

Figure S5 X-ray diffraction patterns of the pristine high nickel NCM, cycled high nickel NCM after 500 cycles in LiPF_6 and Dual-salt + FEC electrolyte, respectively.

Figure S6 Top view SEM image of the Li metal anode before cycling.

Figure S7(a)-(b) High resolution XPS spectra of O1s for the Li metal anode after 500 cycles in the baseline LiPF₆ electrolyte and Dual-salt + FEC electrolyte, respectively.

Figure S8 (a)-(b) and (c)-(d) SEM images and the corresponding EDS elements compositions in the SEI for the Li metal anode after 500 cycles in $LiPF_6$ electrolyte and Dual-salt + FEC electrolyte, respectively.

Element	Atomic Fraction (%)	Atomic Error (%)	Mass Fraction (%)	Mass Error (%)	Fit Error (%)
С	75.49	5.78	68.24	3.38	2.04
Ο	10.71	2.28	13.13	2.69	0.47
F	12.97	2.77	16.89	3.46	0.53
Р	0.84	0.17	1.74	0.34	1.45

Table S1 EDS elements compositions of the amorphous phase region as shown inFigure 4(a).

Table S2 EDS elements compositions of the amorphous phase region as shown in

Element	Atomic Fraction (%)	Atomic Error (%)	Mass Fraction (%)	Mass Error (%)	Fit Error (%)
С	22.32	6.25	17.30	2.99	6.60
Ν	0.00	0.04	0.00	0.04	0.00
Ο	75.22	25.47	79.06	20.31	2.25
F	1.37	0.47	1.53	0.41	6.74
S	1.08	0.36	2.12	0.52	2.55

Figure 4(e).