Electronic Supplementary Information

Nano Fe and Mg₂Ni derived from TMA-TM (TM=Fe, Ni) MOFs

as synergetic catalysts for hydrogen storage in MgH₂

Zhewen Ma^a, Qiuyu Zhang^a, Wen Zhu^a, Darvaish Khan^a, Chuanzhu Hu^a, Tianping Huang^a,

Wenjiang Ding ^{a,b,c}, Jianxin Zou ^{a,b,c,*},

^a National Engineering Research Center of Light Alloys Net Forming & State Key Laboratory of

Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, PR China;

^b Shanghai Engineering Research Center of Mg Materials and Applications & School of

Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China

^c Center of Hydrogen Science, Shanghai Jiao Tong University, Shanghai, 200240, PR China

Supplementary Figures:

Fig. S1. Thermogravimetric profiles of the TMA-TM MOFs.

Fig. S2. PC isotherms and the van't Hoff plots of pure MgH₂ (a-b), the MgH₂-Fe MOF (c-d) and the MgH₂-TM MOFs (TM=Fe, Ni) (e-f) composites tested at different temperatures (Ab, absorption; De, desorption).

Fig. S3. SEM images of the as milled, rehydrogenated and dehydrogenated of pure MgH₂ (a-c) and MgH₂-Fe MOF composites (d-f), typical bright field TEM micrographs (g), the corresponding SAED patterns (h), the dark field micrographs (i) contributed by α -Fe (110) and the HRTEM image (j) of the hydrogenated MgH₂-Fe MOF composite sample.

Fig. S4. SEM micrographs of the as milled (a), re-hydrogenated (b, c) and dehydrogenated (d, e) MgH2-Fe MOF composite in low magnification (LM) and high magnification (HM), the corresponding elemental mappings.

Fig. S5. SEM micrographs of the as milled (A), re-hydrogenated (B, C) and dehydrogenated (D, E) ternary MgH₂-TM MOFs (TM=Fe, Ni) composite in low magnification (LM) and high magnification (HM), the corresponding elemental mappings.

Supplementary Table:

Samples	BET surface area (m ² /g)	BJH pore size (nm)	Pore volume (cm ³ /g)	
TMA-Fe MOF	1015.49	3.02	0.5317	
TMA-Ni MOF	346.22	7.40	0.1736	

Table S1. Pore characteristic parameters of the TMA-TM MOFs (TM=Fe, Ni).

Table S2. PCT data of the pure MgH₂, MgH₂-Fe MOF and ternary MgH₂-TM MOFs (TM=Fe, Ni) composite samples obtained at different temperatures.

Samples	Temperature (K)	Maximum H-absorption (wt %)	Reversible H ₂ sorption capacity (wt %)	Absorption plateaus (MPa)	Desorption plateaus (MPa)
	648	7.02	5.71	1.33	0.91
Pure Mg	623	6.89	4.85	0.81	0.48
	598	6.73	4.51	0.41	0.26
	573	6.68	_	0.30	_
	648	5.64	5.63	1.29	1.09
MgH ₂ -Fe MOF	623	5.52	5.51	0.74	0.61
composite	598	5.51	5.50	0.42	0.33
	573	5.44	4.76	0.19	0.11
	548	5.32	1.13	—	_
	648	5.42	5.27	1.12	0.96
	623	5.43	5.24	0.68	0.57
MgH ₂ -TM MOFs	598	5.32	5.19	0.36	0.30
composite	573	5.26	5.07	0.23	0.17
	548	5.19	5.16	0.11	0.08
	523	5.13	3.35	—	0.03