Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2020

Electronic Supplementary Material (ESI) for *Sustainable Energy & Fuels*. This journal is © The Royal Society of Chemistry 2019

Fabrication of NH₂-MIL-125 Nanocrystals for High Performance Photocatalytic Oxidation

Xiuniang Tan,^{a, b} Jianling Zhang,^{*a, b, c} Jinbiao Shi,^{a, b} Xiuyan Cheng,^{a, b} Dongxing Tan,^{a, b} Bingxing Zhang,^{a, b} ^b Lifei Liu,^{a, b} Fanyu Zhang,^{a, b} Buxing Han ^{a, b, c} and Lirong Zheng ^d

^a Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and

Chemical Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences,

Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R.China.

^b School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P.R.China..

^c Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing 101400,

P.R.China.

^d Beijing Synchrotron Radiation Facility (BSRF), Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P.R.China.

*E-mail: zhangjl@iccas.ac.cn.

Fig. S1 SEM image (a) and TEM image (b) of m-NH₂-MIL-125. Scale bars, 5 μ m in (a) and 2 μ m in (b).

Fig. S2 EDX spectrum of n-NH₂-MIL-125.

Fig. S3 EDX elemental mapping of n-NH₂-MIL-125.

Fig. S4 FT-IR spectrum of OmimAc. The characteristic absorptions of OmimAc are C-H vibrations of imidazolium ring at 3144 and 3082 cm⁻¹, absorption bands of acetate at 1751 and 1716 cm⁻¹, and skeleton stretching vibrations of imidazolium ring at 1466 and 1169 cm⁻¹.

Fig. S5 N₂ adsorption-desorption isotherms of n-NH₂-MIL-125 (I) and m-NH₂-MIL-125 (II).

Fig. S6 TG curve of *n*-NH₂-MIL-125. It displays three steps for mass losses. From 35 to 100 °C, the weight loss corresponds to the removal of guest molecules methanol. The mass loss between 100 and 330 °C corresponds to the desorption of the non-coordinated ligand NH₂-H₂BDC trapped in *n*-NH₂-MIL-125. The main weight loss in the region of 330 to 520 °C results from the decomposition of the framework to produce TiO₂. The thermal stability of *n*-NH₂-MIL-125 is similar with the reported NH₂-MIL-125.^{1,2}

Fig. S7 Survey XPS spectra of the n-NH₂-MIL-125 (a) and m-NH₂-MIL-125 (b).

Fig. S8 C 1s XPS spectra of *n*-NH₂-MIL-125 (I) and *m*-NH₂-MIL-125 (II). The four carbon bonds C=C, C-N, C-C and C=O located at 284.8, 285.3, 286.5 and 288.8 eV, respectively, coincide with the molecular structure of the MOF.

Fig. S9 N 1s XPS spectra of n-NH₂-MIL-125 (I) and m-NH₂-MIL-125 (II). The two bands are assigned to the N of -NH₂ protruding into or stretching out the cavities (399.6 eV) and the positively charged N (-NH-⁺ or -N=⁺, 402.6 eV), respectively.

Fig. S10 XRD pattern (a) and TEM image (b) of the reused *n*-NH₂-MIL-125. Scare bar, 200 nm.

Fig. S11 SEM images of NH₂-MIL-125 nanocrystals synthesized by using different amounts of OmimAc: 0.1 g mL⁻¹ (a) and 0.3 g mL⁻¹ (b) for OmimAc to DMF/MeOH. Scale bars, 2.5 μ m in (a) and 1 μ m in (b).

Fig. S12 TEM images of NH₂-MIL-125 nanocrystals synthesized by using different amounts of OmimAc: 0.1 g mL⁻¹ (a) and 0.3 g mL⁻¹ (b) for OmimAc to DMF/MeOH. Scale bars, 2 μ m in (a) and 200 nm in (b).

Fig. S13 Size distributions of NH_2 -MIL-125 particles synthesized by using different amounts of OmimAc: 0.1 g mL⁻¹ (a) and 0.3 g mL⁻¹ (b) for OmimAc to DMF/MeOH.

Fig. S14 XRD patterns of NH_2 -MIL-125 nanocrystals synthesized by using different amounts of OmimAc: 0.1 g mL⁻¹ (a) and 0.3 g mL⁻¹ (b) for OmimAc to DMF/MeOH.

Fig. S15 Photocatalytic performances of NH_2 -MIL-125 nanocrystals synthesized by using different amounts of OmimAc for benzylamine into N-benzylbenzaldimine at 9 h: 0.1 g mL⁻¹ (a) and 0.3 g mL⁻¹ (b) for OmimAc to DMF/MeOH.

Photocatalyst	Reaction condition	Conversion (%)	Selectivity (%)	TOF (μmol g ⁻¹ h ⁻¹)	Reference
<i>n</i> -NH ₂ -MIL-125	0.2 mmol amine, 10 mg catalyst, 4 mL MeCN, 300 W Xe lamp (350-780 nm), air, 25 °C, 9 h	98.5	99.0	1063	This work
<i>m</i> -NH ₂ -MIL-125	0.2 mmol amine, 10 mg catalyst, 4 mL MeCN, 300 W Xe lamp (350-780 nm), air, 25 °C, 9 h	55.9	93.5	570	This work
NH ₂ -UiO-66	0.1 mmol amine, 15 mg catalyst, 3 mL MeCN, 350 W Xe lamp (full range), air, RT, 10 h	83	99	277	3
TiO ₂	0.1 mmol amine, 10 mg catalyst, 5 mL MeCN, air, 100 W Hg lamp (>300 nm), 9 h 500 W Xe lamp (>350 nm), 5 h				4
		99	85	472	
		93	87	809	
Nb_2O_5	5 mmol amine, 100 mg catalyst, 10 mL benzene, 500 W Hg lamp (>300 nm), O ₂ , RT, 50 h	>99	97	485	5
Ag/Agl/Titanate	0.5 mmol amine, 50 mg catalyst, 10 mL MeCN, 500 W Hg lamp, O₂, 40 °C, 24 h	95	96	190	6
(Zn ^{II} /Ti ^{IV})LDH	0.2 mmol amine, 20 mg catalyst, 5 mL MeCN, 500 W Hg lamp (>300 nm), air, 5 h	100	97	970	7
NH ₂ -MIL-125	0.1 mmol amine, 5 mg catalyst, 2.0 mL MeCN, 300 W Xe lamp (420-800 nm), O ₂ , 12 h	73	86	523	8

Table S1 Comparison of different photocatalysts for benzylamine oxidation into N-benzylbenzaldimine.

References

- 1 Y. H. Fu, D. R. Sun, Y. J. Chen, R. K. Huang, Z. X. Ding, X. Z. Fu and Z. H. Li, Angew. Chem. Int. Ed., 2012, 51, 3364-3367.
- 2 Z. H. Rada, H. R. Abid, J. Shang, Y. D. He, P. Webley, S. M. Liu, H. Q. Sun and S. B. Wang, Fuel, 2015, 160, 318-327.
- 3 R. X. Liu, S. Y. Meng, Y. L. Ma, L. T. Niu, S. H. He, X. Q. Xu, B. T. Su, D. D. Lu, Z. W. Yang and Z. Q. Lei, *Catal. Commun.*, 2019, **124**, 108-112.
- 4 X. N. Lang, H. W. Ji, C. C. Chen, W. H. Ma and J. C. Zhao, Angew. Chem. Int. Ed., 2011, 50, 3934-3937.
- 5 S. Furukawa, Y. Ohno, T. Shishido, K. Teramura and T. Tanaka, ACS Catal., 2011, 1, 1150-1153.
- 6 Z. F. Zheng, C. Chen, A. Bo, F. S. Zavahir, E. R. Waclawik, J. Zhao, D. J. Yang and H. Y. Zhu, ChemCatChem, 2014, 6, 1210-1214.
- 7 X.-J. Yang, B. Chen, X.-B. Li, L.-Q. Zheng, L.-Z. Wu and C.-H. Tung, Chem. Commun., 2014, 50, 6664-6667.
- 8 D. R. Sun, L. Ye and Z. H. Li, *Appl. Catal. B: Environ.*, 2015, **164**, 428-432.