Supporting Information

Synthesis of Oxygenated Fuel Additive from Waste Biomass Derived Aldehyde using Green Catalyst: An Experimental and DFT Study

Komal Kumar[†], Vikas Khatri[‡], Firdaus Parveen[†], Hemant K. Kashyap^{*‡} and Sreedevi Upadhyayula^{*†}

[†]Department of Chemical Engineering, [‡]Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110016, India.

*†Corresponding author. Tel. No: +91 11 26591083, Fax: +91 11 26591120, E-mail: <u>hkashyap@chemistry.iitd.ac.in</u>; <u>sreedevi@chemical.iitd.ac.in</u>

Contents

S.No.	Figures	Details	Page No.
1	Fig. S1	Absorption spectra of 4-nitroaniline with the 30 mM concentrations of different protic ionic liquid catalyst in H_2O .	3
2	Fig. S2	Absorption spectra of 4-nitroaniline with the 25 mM concentrations of different protic ionic liquid catalyst in H_2O .	3
2	Fig. S3	Optimized structures of ionic liquid (a) [IL-SO ₃ H][Cl] (b) [IL-COOH][Cl] (c) [IL-OH][Cl] and (d-f) shows their conjugate base respectively.	4
3	Fig. S4	Optimized structures of ionic liquid (a) [IL-SO ₃ H][CF ₃ SO ₃] (b) [IL-SO ₃ H][HSO ₄] (c) [IL-SO ₃ H][CF ₃ COO] and (d) [IL- SO ₃ H][NO ₃].	5
4	Fig. S5	Frontier Orbital diagram (a-d) are the HOMOs and (e-h) are the LUMOs of protic ionic liquid [IL-SO ₃ H][CF ₃ SO ₃], [IL-SO ₃ H][HSO ₄], [IL-SO ₃ H][CF ₃ COO], and [IL-SO ₃ H][NO ₃] respectively. (isovalue = 0.03 a.m.u.)	6
5	Fig. S6	¹ H NMR spectrum of the synthesized protic ionic liquid [IL-SO ₃ H][CF ₃ SO ₃] catalyst.	6
6	Fig. S7	¹³ C NMR spectrum of the synthesized protic ionic liquid [IL-SO ₃ H][CF ₃ SO ₃] catalyst.	7
7	Fig. S8	¹ H NMR spectrum of the synthesized protic ionic liquid [IL-SO ₃ H][HSO ₄] catalyst.	7
8	Fig. S9	¹³ C NMR spectrum of the synthesized protic ionic liquid [IL- SO ₃ H][HSO ₄] catalyst.	8
9	Fig. S10	¹ H NMR spectrum of the synthesized protic ionic liquid [IL-SO ₃ H][CF ₃ COO] catalyst.	8
10	Fig. S11	¹³ C NMR spectrum of the synthesized protic ionic liquid [IL- SO ₃ H][CF ₃ COO] catalyst.	9
11	Fig. S12	¹ H NMR spectrum of the synthesized protic ionic liquid [IL- SO ₃ H][NO ₃] catalyst.	9
12	Fig. S13	¹³ C NMR spectrum of the synthesized protic ionic liquid [IL- SO ₃ H][NO ₃] catalyst.	10
13	Fig. S14	¹ H NMR spectrum of the synthesized product.	11
14	Fig. S15	¹³ C NMR spectrum of the synthesized product.	12

Fig. S1. Absorption spectra of 4-nitroaniline with the 30 mM concentrations of different protic ionic liquid catalyst in H_2O .

Fig. S2. Absorption spectra of 4-nitroaniline with the 25 mM concentrations of different protic ionic liquid catalyst in H_2O .

Fig. S3.Optimized structures of ionic liquid (a) [IL-SO₃H][Cl] (b) [IL-COOH][Cl] (c) [IL-OH][Cl] and (d-f) shows their conjugate base respectively.

Fig. S4. Optimized structures of ionic liquid (a) $[IL-SO_3H][CF_3SO_3]$ (b) $[IL-SO_3H][HSO_4]$ (c) $[IL-SO_3H][CF_3COO]$ and (d) $[IL-SO_3H][NO_3]$.

Fig. S5. Frontier Orbital diagram (a-d) are the HOMOs and (e-h) are the LUMOs of protic ionic liquid [IL-SO₃H][CF₃SO₃], [IL-SO₃H][HSO₄], [IL-SO₃H][CF₃COO], and [IL-SO₃H][NO₃] respectively. (isovalue = 0.03 a.m.u.)

Fig. S6. ¹H NMR spectrum of the synthesized protic ionic liquid [IL-SO₃H][CF₃SO₃] catalyst.

Fig. S7. ¹³C NMR spectrum of the synthesized protic ionic liquid [IL-SO₃H][CF₃SO₃] catalyst.

Fig. S8. ¹H NMR spectrum of the synthesized protic ionic liquid [IL-SO₃H][HSO₄] catalyst.

Fig. S9. ¹³C NMR spectrum of the synthesized protic ionic liquid [IL-SO₃H][HSO₄] catalyst.

Fig. S10. ¹H NMR spectrum of the synthesized protic ionic liquid [IL-SO₃H][CF₃COO] catalyst.

Fig. S11. ¹³C NMR spectrum of the synthesized protic ionic liquid [IL-SO₃H][CF₃COO] catalyst.

Fig. S12. ¹H NMR spectrum of the synthesized protic ionic liquid [IL-SO₃H][NO₃] catalyst.

Fig. S13. ¹³C NMR spectrum of the synthesized protic ionic liquid [IL-SO₃H][NO₃] catalyst.

Fig. S14. ¹H NMR spectrum of the synthesized product.

Fig. S15. ¹³C NMR spectrum of the synthesized product.