Structure and size control of FePtCu nanocatalyst for high

performance hydrogen evolution reaction

Tianci Wu, +^a Xu Chen, +^a Yi Wang,^b Hanbin Wang,^{*a} Yongzheng Liu,^a Jing Chang,^a Houzhao Wang,^a sihan cheng^a and and Hao Wang^a*

a Key Laboratory of Ferro and Piezoelectric Materials and Devices of Hubei Province, Faculty of Physics and Electronic Science, Hubei University,

^{430062,} Wuhan, Hubei, China.

b Max Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany

⁺ The authors contribute equally to this work.

Figure S1

Fig. S1. The polarization curves of the $L1_0$ ordered $Fe_{45}Pt_{35}Cu_{20}$ nanoparticles before and after 1000 cycles in 0.5 M H₂SO₄ electrolyte saturated with N₂. These $L1_0$ ordered $Fe_{45}Pt_{35}Cu_{20}$ nanoparticles were fabricated by using FeCl₂ as the iron source.

Figure S2

Fig. S2. (a) The HAADF-STEM image of the $L1_0$ ordered $Fe_{45}Pt_{35}Cu_{20}$ nanoparticles obtain by using FeCl₂ as the iron source. (b) High resolution-STEM image of one typical nanoparticles in (a).

Figure S3

Fig. S3. High-resolution SEM images of powder sample of S1-S6. The images reveal that the size and morphology of the $Fe_{45}Pt_{35}Cu_{20}$ nanoparticles are influenced by the $FeCl_2/Fe(acac)_3$ ratio in precursors.

Figure S4

Fig. S4. The STEM image (a) and corresponding EDS mappings (b-e) of smaller $Fe_{45}Pt_{35}Cu_{20}$ nanoparticles in Sample S4.

Table S1

Materials	overpotential [mV]	Tafel slope [mV decade ⁻¹]	Reference
FePt35Cu (Sample 4)	10	24	This work
Pt/C	30	30	This work
AuPt nano dendrites	39	34	1
Au ₁ Pt ₃	211	49	1
Pt-Ag/silicon nanowires	135	70	2
Pt@Te nanoparticles	100	55	3
Pt ₇₆ Co ₂₄ nanomyriapods	45	32	4
Pt ₈₀ Co ₂₀ nanomyriapods	36	37	4
Pd@PdPt	39	38	5
PdPt alloy	50	38	5
PtNiCu	/	28	6
PtCu	/	29	6
Pt ₈₁ Fe ₂₈ Co ₁₀ TriStar	/	21	7
Pt ₈₁ Fe ₂₈ Co ₈ TriStar	/	22	7

Comparison of the HER performance of $Fe_{45}Pt_{35}Cu_{20}$ nanoparticles with results presented by other literatures in acidic conditions.

Reference

1. X. Weng, Y. Liu, K. Wang, J. Feng, J. Yuan, A. Wang, Q. Xu, *International Journal of Hydrogen Energy*, 2016, **41**, 18193-18202.

2. W. Shen, B. Wu, F. Liao, B. Jiang, M. Shao, *International Journal of Hydrogen Energy.*, 2017, **42**, 15024-15030.

3. A. Zhang, S. Yu, Y. Jiang, L. Jia, X. Xia, W. Ye, C. Wang, *International Journal of Hydrogen Energy*.,2015, **40**, 16238-16247.

4. L. Jiang, X. Huang, A. Wang, X. Li, J. Yuan, J. Feng, *Mater. Chem. A.*, 2017, 5, 10554-10560.

5. Y. Liu, S. Liu, Z. Che, S. Zhao, X. Sheng, M. Han and J. Bao, Journal of Materials Chemistry A,

2016, **4**, 16690 - 16697.

6. X. Cao, Y. Han, C. Gao, Y. Xu, X. Huang, M. Willander, N. Wang, *Nano Energy.*, 2014, **9**, 301–308.

7. N. Du, C. Wang, X. Wang, Y. Lin , J. Jiang , and Y. Xiong, *Advanced Materials.*, 2016, **28**, 2077-2084.