SUPPORTING INFORMATION

An aqueous rechargeable dual-ion hybrid battery based on

Zn//LiTi₂(PO₄)₃ electrodes

Zishuai Zhang¹, Yu Zhou¹, Qiang Ru¹, Ching-yuan Su², Linfeng Sun³, Xianhua Hou^{1*}, Fuming Chen^{1*}

¹Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006 fmchen@m.scnu.edu.cn; houxianhua@m.scnu.edu.cn

²Graduate Institute of Energy Engineering, National Central University, Tao-Yuan 32001, Taiwan

³Department of Energy Science, Sungkyunkwan University, Suwon 16419, Korea

Fig S1 High resolution XPS spectrum of Ti in as-prepared LiTi₂(PO₄)₃@C.

Fig S2 Scanning electron microscopy (SEM) images of $\text{LiTi}_2(\text{PO}_4)_3$ @C (a) and (b). Transmission electron microscopy (TEM) imagines of $\text{LiTi}_2(\text{PO}_4)_3$ @C (c) and (d).

Fig S3 XRD patterns of $LiTi_2(PO_4)_3$ cathode in initial state, after discharge state, and charge state (a) and (b) in fresh state, after 250 cycles and 500 cycles.

Cathode	Anode	Electrolyte	Testing	Current rate	Capacity	Ref
			voltage (V)		(mAh g ⁻¹)	
LiTi ₂ (PO ₄) ₃ /C	Zn	0.5M ZnSO ₄ +	0-1.2	12C	48.52 (500	This
		$0.25M Li_2SO_4$		(1C=138 mA g ⁻¹)	cycles)	work
Li ₃ V ₂ (PO ₄) ₃	Zn	2 M ZnSO ₄	0.7-2.1	0.2C	86.7 (200	1
		+1 M Li ₂ SO ₄		(1C=133 mA g ⁻¹)	cycles)	
$Na_3V_2(PO_4)_3$	Zn	2 M ZnSO ₄	0.7-2.1	0.2C	95 (20	1
		+1 M Li ₂ SO ₄		(1C=118 mA g ⁻¹)	cycles)	
$Na_3V_2(PO_4)_3$	Zn	0.5M Zn(CH ₃ COO) ₂	0.8-1.7	0.5C	72 (100	2
				(1C=118 mA g ⁻¹)	cycles)	
Na ₃ V ₂ (PO ₄) ₃ /C	Zn	1M Zn(CH ₃ COO) ₂	0.8-1.7	0.5C	70.84 (200	3
		+0.5M CH ₃ COONa		(1C=118 mA g ⁻¹)	cycles)	
Na ₃ V ₂ (PO ₄) ₂ F ₃	Zn	2M Zn(CH ₃ F ₃ SO ₃) ₂	0.8-1.9	80 mA g ⁻¹	46 (4000	4
					cycles)	
LiMn ₂ O ₄	LiTi ₂ (P	1M Li ₂ SO ₄	0-1.8	0.2C	114 (100	5
	O ₄) ₃ /C			(1C=138 mA g ⁻¹)	cycles)	

Table S1. The comparison of the current system and other aqueous batteries

References:

- 1. H. B. Zhao, C. J. Hu, H. W. Cheng, J. H. Fang, Y. P. Xie, W. Y. Fang, T. N. L. Doan, T. K. A. Hoang, J. Q. Xu and P. Chen, *Scientific Reports*, 2016, **6**.
- G. Li, Z. Yang, Y. Jiang, C. Jin, W. Huang, X. Ding and Y. Huang, *Nano Energy*, 2016, 25, 211-217.
- 3. G. Li, Z. Yang, Y. Jiang, W. Zhang and Y. Huang, *Journal of Power Sources*, 2016, **308**, 52-57.
- 4. W. Li, K. Wang, S. Cheng and K. Jiang, *Energy Storage Materials*, 2018, 15, 14-21.
- 5. Z. Huang, L. Liu, Q. Zhou, J. Tan, Z. Yan, D. Xia, H. Shu, X. Yang and X. Wang, *Journal of Power Sources*, 2015, **294**, 650-657.