Supporting Information

Hexanedioic Acid Mediated in-situ Functionalized Interconnected

Graphitic 3D Carbon Nanofibers as Pt Support Catalysts for

Trifunctional Electrocatalysis

Sathyanarayanan Shanmugapriya,^a Palanisamy Rupa Kasturi,^b Pei Zhu,^b Jiadeng Zhu,^{bc} Chaoyi Yan,^b Xiangwu Zhang,^{b*} and Ramakrishnan Kalai Selvan ^{ab*}

^aEnergy Storage and Conversion Devices Laboratory, Department of Physics, Bharathiar University, Coimbatore, 641-046, Tamil Nadu, India.

^bDepartment of Textile Engineering Chemistry and Science, Wilson College of Textiles, North Carolina State University, Raleigh, NC 27695-8301, USA.

^cDepartment of Mechanical and Aerospace Engineering, University of Virginia, Charlottesville, VA 22904, USA.

Fig. S1 FTIR spectra of ACNF-0 (a), ACNF-I (b), ACNF-II (c), and ACNF-III (d).

Fig. S2 EDAX spectra of Pt/ACNFs.

Fig. S3 Elemental mapping images of Pt/ACNF-II.

Fig. S4 EIS analysis: Nyquist plot of prepared Pt/ACNF electrodes.

Fig. S5 LSV polarization curves of Pt/ACNF-0, I, and II at various rpms.

Fig. S6 K-L plots of Pt/ACNF-0, I, and II.

	XRD									
ACNEs	(0 0 2)			(1 0 0)					RAMAN	
i i i i i i i i i i i i i i i i i i i	2 θ	d ₀₀₂	FWHM	L _c	2 θ	d ₁₀₀	FWHM	La	D	I_D/I_G
	(deg)	(nm)	(2 θ)	(nm)	(deg)	(nm)	(2 θ)	(nm)	K	
ACNF-0	24.76	0.359	8.637	0.95	43.70	0.206	5.215	3.35	3.71	0.90
ACNF-I	24.87	0.357	8.562	0.96	43.90	0.206	5.198	3.36	3.72	0.89
ACNF-II	25.07	0.354	8.371	0.98	44.10	0.205	4.826	3.63	3.92	0.88
ACNF-III	24.68	0.360	8.655	0.94	43.61	0.207	5.353	3.27	3.55	0.92

Table S1. Structural parameters from XRD and Raman analysis.

ACNFs	C1s (At. %)	N1s (At. %)	O1s (At. %)	N/C	O/C
ACNF-0	85.5	9.1	5.4	0.10	0.06
ACNF-I	84.8	9.6	5.6	0.11	0.07
ACNF-II	81.9	11.2	6.9	0.14	0.09
ACNF-III	81.7	9.7	8.6	0.12	0.11

Table S2. Elemental composition of prepared ACNFs obtained using XPS analysis.

 Table S3. Comparative performance of ORR with other related recent reports on Pt based
 electrocatalysts.

Electrocatalysts	Electrolyte (H ₂ SO ₄)	Onset Potential (mV)	Half-Wave Potential (mV)	Tafel Slope (mV dec ⁻¹)	Ref
Fe@Pt/C	0.5 M	-	-	119	[S1]
2Pt- 35TiO ₂ /MWCNT	0.05 M	0.92	0.75	62 133	[S2]
Pt/MWCNT-RT	0.05 M	-	0.82	62 119	[S3]
Pt/MWCNT-B1500	0.05 M	-	0.88	68 118	[S4]
Pt/rGO-N	0.05 M	-	0.85	63 121	[85]
PtCo/10PAN-CNT	0.5 M	-	-	59.5	[S6]
Pt/mPHCNFs	0.5 M	0.998	0.917	-	[S7]
TiH ₂ S60	0.5 M	0.8	-	93	[S8]
Pt/S-MC	0.5 M	-	0.886	84	[S9]
Pt/CFx	0.5 M	-	-	109	[S10]
Pt/Ni ₃ P/CNT-CNF	0.5 M	0.729	0.499	-	[S11]
Pt/CNF 700	0.5 M	-	-	65 120	[S12]
Pt-C (Mo ₂ C) 800 C	0.5 M	0.98	0.83	125	[S13]
Pt/ACN3F-II	0.5 M	0.90	0.79	69 129	Present work

Electrocatalysts	Electrolyte	Scan rate	ECSA	Mass Activity	Ref
	$(0.5M H_2 SO_4 +)$	(mV s ⁻¹)	(m ² g ⁻¹)	(A g ⁻¹)	
Pt/C-OT-30	1M CH ₃ OH	50	72.150	-	[S14]
Pt/MWCNTs-U	1M CH ₃ OH	50	36.0	-	[S15]
Pt/Co-coal-CF	0.5M CH ₃ OH	50	-	78.5	[S16]
Pt/CXG-3s	2M CH ₃ OH	20	59	-	[S17]
Pt/Lg-CDs-800	0.5M CH ₃ OH	50	40.6	-	[S18]
Pt (10cycles)-CQD	0.5M CH ₃ OH	50	49.61	-	[S19]
PtPd SAANs	0.5M CH ₃ OH	50	-	376.0	[S20]
PtAu PNCs	0.5M CH ₃ OH	50	-	85.2	[S21]
PtNPs/TPANI-MWCNTs	0.5M CH ₃ OH	50	42.53	173	[S22]
Pt/ATO NF	0.5M CH ₃ OH	50	33	102	[S23]
Pt/PVA-CuO-Co ₃ O ₄ /CH	1.83M CH ₃ OH	100	54.56	-	[S24]
PtCu NFs	0.5M CH ₃ OH	50	63.7	1.64 (A mg ⁻¹)	[S25]
PtRu/GS-CNTs	1M CH ₃ OH	20	118.69	-	[S26]
Pt/3D-SPG	0.5M CH ₃ OH	50	79.65	-	[S27]
Pt/Ti _{0.9} Cu _{0.1} N	0.5M CH ₃ OH	50	57.5	1.56 (A mg ⁻¹)	[S28]
Pt/ACNF-II	1M CH ₃ OH	20	119.21	684.57	Present work

 Table S4. Comparative performance of MOR with other related recent reports on Pt based
 electrocatalysts.

Electrocatalysts	Electrolyte	Overpotential,	Tafel Slope	Ref	
		η ₁₀ (mV)	(mV dec ⁻¹)		
PtNi/CNFs	0.5 M H ₂ SO ₄	34	31	[S29]	
PtPd NSs	0.5 M H ₂ SO ₄	22	37	[S30]	
Pt ₆₆ Ni ₃₄ NFs	0.5 M H ₂ SO ₄	43	33	[S31]	
Pt-12	0.5 M H ₂ SO ₄	50(n ₆₀)	31	[\$32]	
Pt NPs/rGO	0.5 M H ₂ SO ₄	42	36	[S33]	
PtCu RDNFs	0.5 M H ₂ SO ₄	40	35.51	[S34]	
Pt NPs/CNFs	0.5 M H ₂ SO ₄	175	50	[\$35]	
Pt ₁₃ Cu ₇₃ Ni ₁₄ /CNF@CF	1M H ₂ SO ₄	70	38	[S36]	
Pt/HPC-14.1	0.5 M H ₂ SO ₄	24	33	[S37]	
PtNi ₂ @CNS-600	0.5 M H ₂ SO ₄	68	35.27	[S38]	
Pt ₇₅ Co ₂₅ NDAs	0.5 M H ₂ SO ₄	34	30	[S39]	
H-AgPt NCs	0.5 M H ₂ SO ₄	51	40	[S40]	
Pt@HN-BC	0.5 M H ₂ SO ₄	47	35	[S41]	
Pt/BCF	0.5 M H ₂ SO ₄	55	32	[S42]	
AC Pt-NG/C	0.5 M H ₂ SO ₄	35.28	27	[S43]	
Pt/rGO/GCE	0.5 M H ₂ SO ₄	-	33	[S44]	
Pt/ACNF-II	0.5 M H ₂ SO ₄	50	35	Present work	

 Table S5. Comparative performance of HER with other related recent reports on Pt based
 electrocatalysts.

References:

[S1] Y. Huang, Z. Tan, H. Wu, C. Feng and Y. Ding, *Ionics*, 2018, 24, 229-236.

[S2] S. Hussain, H. Erikson, N. Kongi, A. Tarre, P. Ritslaid, M. Rähn, L. Matisen, M. Merisalu, V. Sammelselg and K. Tammeveski, *International Journal of Hydrogen Energy*, 2018, **43**, 4967-4977.

[S3] S. Hussain, H. Erikson, N. Kongi, M. Merisalu, P. Ritslaid, V. Sammelselg and K. Tammeveski, *International Journal of Hydrogen Energy*, 2017, **42**, 5958-5970.

[S4] S. Hussain, H. Erikson, N. Kongi, M. Merisalu, M. Rähn, V. Sammelselg, G. Maia and K. Tammeveski, *Journal of The Electrochemical Society*, 2017, **164**, F1014-F1021.

[**S5**] S. Hussain, H. Erikson, N. Kongi, A. Treshchalov, M. Rähn, M. Kook, M. Merisalu, L. Matisen, V. Sammelselg and K. Tammeveski, *ChemElectroChem*, 2018, **5**, 2902-2911.

[S6] D. Kaewsai, P. Piumsomboon, K. Pruksathorn and M. Hunsom, *RSC Advances*, 2017, 7, 20801-20810.

[S7] K. K. Karuppanan, A. V. Raghu, M. K. Panthalingal and B. Pullithadathil, *ChemElectroChem*, 2019, 6, 2029-2042.

[S8] O. Krichevski, H. Teller, P. Subramanian, S. Kolagatla and A. Schechter, *Journal of Solid State Electrochemistry*, 2018, **22**, 2049-2058.

[S9] V. Perazzolo, R. Brandiele, C. Durante, M. Zerbetto, V. Causin, G. A. Rizzi, I. Cerri, G. Granozzi and A. Gennaro, *Acs Catalysis*, 2018, **8**, 1122-1137.

[S10] F. A. Viva, G. A. Olah and G. S. Prakash, *International Journal of Hydrogen Energy*, 2017, 42, 15054-15063.

[S11] X. Wu, Z. Liu, J. Zeng, Z. Hou, W. Zhou and S. Liao, *ChemElectroChem*, 2017, 4, 109-114.

[S12] D. Sebastián, M. Lázaro, I. Suelves, R. Moliner, V. Baglio, A. Stassi and A. Aricò, *international journal of hydrogen energy*, 2012, **37**, 6253-6260.

[S13] E. Lust, K. Vaarmets, J. Nerut, I. Tallo, P. Valk, S. Sepp and E. Härk, *Electrochimica Acta*, 2014, 140, 294-303.

[S14] X. Chang, F. Dong, Z. Tang and F. Zha, *International Journal of Hydrogen Energy*, 2019, 44, 27445-27454.

[S15] A. Nouralishahi, Y. Mortazavi, A. A. Khodadadi, M. Choolaei, L. T. Thompson and B. A. Horri, *Applied Surface Science*, 2019, **467**, 335-344.

[S16] X. Mu, Z. Xu, Y. Xie, H. Mi and J. Ma, *Journal of Alloys and Compounds*, 2017, 711, 374-380.

[S17] C. Alegre, D. Sebastián, M. E. Gálvez, R. Moliner and M. J. Lázaro, *Applied Catalysis B: Environmental*, 2016, 192, 260-267.

[S18] X. Li, Y. Lv and D. Pan, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, **569**, 110-118.

[S19] R. Sha, S. S. Jones and S. Badhulika, *Surface and Coatings Technology*, 2019, 360, 400-408.

[S20] Y.-C. Shi, L.-P. Mei, A.-J. Wang, T. Yuan, S.-S. Chen and J.-J. Feng, *Journal of colloid and interface science*, 2017, 504, 363-370.

[S21] X.-W. Xie, J.-J. Lv, L. Liu, A.-J. Wang, J.-J. Feng and Q.-Q. Xu, *International Journal of Hydrogen Energy*, 2017, **42**, 2104-2115.

[S22] Z. Su, C. Li, Y. Cheng, Q. Gui, Y. Xiong, Y. Tan, H. Jiang and X. Liu, *RSC Advances*, 2018, **8**, 33742-33747.

[S23] G. Liu, A. Bonakdarpour, X. Wang, X. Bi and D. P. Wilkinson, *Electrocatalysis*, 2019, 10, 262-271.

[S24] M.-S. Ekrami-Kakhki, A. Naeimi and F. Donyagard, *international journal of hydrogen energy*, 2019, 44, 1671-1685.

[S25] X. Li, Y. Zhou, Y. Du, J. Xu, W. Wang, Z. Chen and J. Cao, *International Journal of Hydrogen Energy*, 2019.

[**S26**] Y.-S. Wang, S.-Y. Yang, S.-M. Li, H.-W. Tien, S.-T. Hsiao, W.-H. Liao, C.-H. Liu, K.-H. Chang, C.-C. M. Ma and C.-C. Hu, *Electrochimica Acta*, 2013, **87**, 261-269.

[S27] M. An, C. Du, L. Du, Y. Wang, Y. Wang, Y. Sun, G. Yin and Y. Gao, *ChemElectroChem*, 2019, 6, 1157-1165.

[S28] F. Yu, Y. Xie, H. Tang, N. Yang, X. Meng, X. Wang, X. L. Tian and X. Yang, *Electrochimica Acta*, 2018, **264**, 216-224.

[**S29**] J. Chen, J. Wang, J. Chen and L. Wang, *Journal of Materials Science*, 2017, **52**, 13064-13077.

[S30] H.-Y. Chen, M.-X. Jin, L. Zhang, A.-J. Wang, J. Yuan, Q.-L. Zhang and J.-J. Feng, *Journal of colloid and interface science*, 2019, 543, 1-8.

[S31] X.-Y. Huang, X.-Y. Zhu, X.-F. Zhang, L. Zhang, J.-J. Feng and A.-J. Wang, *Electrochimica Acta*, 2018, **271**, 397-405.

[S32] L. Lin, Z. Sun, M. Yuan, J. He, R. Long, H. Li, C. Nan, G. Sun and S. Ma, *Journal of Materials Chemistry A*, 2018, 6, 8068-8077.

[S33] Q. Liu, Y.-M. He, X. Weng, A.-J. Wang, P.-X. Yuan, K.-M. Fang and J.-J. Feng, *Journal of colloid and interface science*, 2018, 513, 455-463.

[**S34**] H.-J. Niu, H.-Y. Chen, G.-L. Wen, J.-J. Feng, Q.-L. Zhang and A.-J. Wang, *Journal of colloid and interface science*, 2019, **539**, 525-532.

[S35] T. Yang, M. Du, H. Zhu, M. Zhang and M. Zou, *Electrochimica Acta*, 2015, 167, 48-54.

[S36] Y. Shen, A. C. Lua, J. Xi and X. Qiu, *ACS applied materials & interfaces*, 2016, **8**, 3464-3472.

[**S37**] M. Song, Y. Song, H. Li, P. Liu, B. Xu, H. Wei, J. Guo and Y. Wu, *Electrochimica Acta*, 2019, **320**, 134603.

[S38] J. Li, L. Liu, Y. Ai, Z. Hu, L. Xie, H. Bao, J. Wu, H. Tian, R. Guo and S. Ren, *Chemistry– A European Journal*, 2019.

[S39] X.-F. Zhang, H.-B. Meng, H.-Y. Chen, J.-J. Feng, K.-M. Fang and A.-J. Wang, *Journal of Alloys and Compounds*, 2019, 786, 232-239.

[S40] F.-Q. Shao, X.-Y. Zhu, A.-J. Wang, K.-M. Fang, J. Yuan and J.-J. Feng, *Journal of colloid* and interface science, 2017, 505, 307-314.

[S41] Y. Zhang, J. Tan, F. Wen, Z. Zhou, M. Zhu, S. Yin and H. Wang, *International Journal of Hydrogen Energy*, 2018, 43, 6167-6176.

[**S42**] Y. Mi, L. Wen, Z. Wang, D. Cao, H. Zhao, Y. Zhou, F. Grote and Y. Lei, *Catalysis Today*, 2016, **262**, 141-145.

[S43] M. Sun, J. Ji, M. Hu, M. Weng, Y. Zhang, H. Yu, J. Tang, J. Zheng, Z. Jiang and F. Pan, *Acs Catalysis*, 2019, **9**, 8213-8223.

[S44] S. Ghasemi, S. R. Hosseini and S. Nabipour, *Journal of the Iranian Chemical Society*, 2019, 16, 101-109.