Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2020

Supporting Information for

Photosensitizing Ruthenium(II)-Dye Multilayers: Photoinduced Charge Separation and Back Electron Transfer Suppression

Nobutaka Yoshimura, Atsushi Kobayashi, * Wataru Genno,[‡] Takashi Okubo,[‡] Masaki Yoshida, Masako Kato*

Department of Chemistry, Faculty of Science, Hokkaido University, North 10 West 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan

[‡]School of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka-shi, Osaka 577-8502, Japan.

Contents

Preparations of Ru(II)-PS-multilayered TiO₂-ITO photoelectrodes.

Calculation of the amount of immobilized Ru(II) complexes on the Pt-TiO2 nanoparticles.

Calculation of the surface coverage of Ru(II) complexes per unit area of TiO₂.

Table S1. Absorbance of each supernatant solution and the calculated C_B and M_i values.

Figure S1. UV-Vis absorption spectra of all the supernatant solutions at 298 K.

- Figure S2. ¹H NMR and emission spectrum of the supernatant solution obtained from the immobilization reaction of **RuCP**² for the synthesis of **RuCP**²-Zr-**RuP**⁶@Pt-TiO₂.
- **Figure S3.** Particle diameter distributions in water estimated by the dynamic light scattering method for TiO₂, Pt-TiO₂, and Ru(II)-PS-multilayered Pt-TiO₂ nanoparticles.
- **Figure S4.** PXRD patterns of **RuCP**²@Pt-TiO₂, **RuCP**²-Zr-**RuP**⁶@Pt-TiO₂, and **RuCP**²-Zr-**RuP**⁴-Zr-**RuP**⁶@Pt-TiO₂ nanoparticles (Pt = 5wt%).
- Table S2. Estimated particle diameters of TiO₂ and Pt cocatalyst.

Figure S5. Transmission electron microscopic (TEM) image of RuCP²-Zr-RuP⁴-Zr-RuP⁶@Pt-TiO₂.

- Figure S6. Recycle tests of the photocatalytic H₂ evolution reactions driven by RuCP²-Zr-RuP⁴-Zr-RuP⁶@Pt-TiO₂ and RuCP² @Pt-TiO₂.
- Figure S7. UV-Vis absorption spectra of the reaction solutions of RuCP²@Pt-TiO₂, RuCP²-Zr-RuP⁶@Pt-TiO₂ and RuCP²-Zr-RuP⁴-Zr-RuP⁶@Pt-TiO₂ nanoparticles after 6h light irradiation.
- Table S3. Control experiments of photocatalytic hydrogen evolution of RuCP²-Zr-RuP⁶@Pt-TiO₂.

Table S4. Zeta potentials of Ru(II)-PS-multilayered Pt-TiO₂ nanoparticles in the absence and presence of KI in water.

- Figure S8. Photocatalytic H₂ evolution reaction driven by $RuCP^2$ -Zr- RuP^6 @Pt-TiO₂ nanoparticles in 0.5 M KI electron donor aqueous solution in the presence of 0.2 or 0.5 mM I₃⁻ anion.
- **Table S5**. Molar absorptivity and the absorbance of Ru(II)-PS-multilayered Pt-TiO₂ and triiodide at 470 nm after 6 h reaction solution.
- Figure S9. SEM images of Ru(II)-PS-multilayered TiO₂-ITO photoelectrodes.
- Figure S10. EDS images of RuCP²-Zr-RuP⁴-Zr-RuP⁶@TiO₂-ITO of the elements Ru, Zr, P and Ti.
- Figure S11. XRF spectra of Ru(II)-PS-multilayered TiO₂-ITO photoelectrodes.

Table S6. Amount of Ru(II) photosensitizer immobilized on TiO₂-ITO electrode.

- **Table S7**. The photovoltaic data of DSSCs based on Ru(II)-PS-multilayered TiO₂-ITO photoelectrodes under AM1.5G irradiation.
- **Figure S12.** IPCE action spectra of **RuCP**²@TiO₂-ITO, **RuCP**²-Zr-**RuP**⁶@TiO₂-ITO, and **RuCP**²-Zr-**RuP**⁴-Zr-**RuP**⁶@TiO₂-ITO as the photoanode in comparison with UV-Vis diffuse reflectance spectra of these photoelectrodes and absorption spectra of **RuP**⁶, **RuP**⁴, and **RuCP**² in water.
- Scheme S1. Schematic energy diagram showing plausible energy and electron transfers of RuCP²-Zr-RuP⁶@Pt-TiO₂.

Preparation of Ru(II)-PS-multilayered TiO₂-ITO photoelectrodes.

- 1. Preparation of TiO₂-ITO electrode: ITO electrodes (sheet resistance = $10 \ \Omega \ cm^{-1}$) were washed under ultrasound irradiation with acetone, pure water, KG aq, LC-2 aq, ultra-pure water, and isopropyl alcohol (IPA). Then electrodes were dried in 90 °C and further cleaned by UV light irradiation (PL16-110, AsOne) for 15 min. TiO₂ paste (PECC-C01-06, Peccell Technologies) were pasted on the cleaned ITO electrodes, dried in R.T. for 15 min, and then sintered at 150 °C for 10 min to obtain TiO₂-ITO electrodes.¹
- 2a. Fabrication of RuCP²@TiO₂-ITO: A TiO₂-ITO electrode was immersed in the aqueous solution containing 0.2 mM Ru(II) PS (RuCP²) and 0.1 M HClO₄ for overnight at 293 K and followed by rinsing with pure water and then dried at 100 °C.
- 2b. Fabrications of **RuCP²-Zr-RuP**⁶@TiO₂-ITO and **RuCP²-Zr-RuP**⁴-Zr-**RuP**⁶@TiO₂-ITO electrodes: These Ru(II)PS-multilayered electrodes were prepared by alternating immersion of a TiO₂-ITO electrode to Ru(II)PS aqueous solution (0.2 mM Ru(II) PS in 0.1 M HClO₄ aq. for overnight) and 5 mM ZrCl₂O MeOH solution (for 60 min) at 293 K. **RuP**⁶, **RuP**⁴ and **RuCP**² were used for the 1st, 2nd and 3rd PS layers, respectively, for **RuCP**²-Zr-**RuP**⁴-Zr-**RuP**⁶@TiO₂-ITO electrodes. **RuP**⁶ and **RuCP**² were used for the 1st and 2nd PS layers for **RuCP**²-Zr-**RuP**⁶@TiO₂-ITO electrodes. Obtained electrodes were washed with MeOH and dried at 100 °C after immersion.
- 4. Dye-sensitized solar cell fabrication: For preparation of the counter electrode, an aqueous solution of poly(3,4ethylenedioxythiophene)tetramethacrylate (PEDOT-TMA, Aldrich 649821) was mixed with ethanol in a volume ratio of 4:1. The mixture was spin-coated (3000 rpm for 10 s) on ITO glass and annealed at 50°C for 10 min. This spin-coating process was repeated for three times. The Ru(II)-dye-multilayered TiO₂-ITO and PEDOT-TMA electrodes were assembled to fabricate a sandwich-type cell with a 50 μm spacer. The electrolyte consisted of a solution of lithium iodide (LiI, 0.5 M), iodine (I₂, 0.05 M) and 0.5 M *t*-butyl pyridine in methoxy-acetonitrile or lithium iodide (LiI, 0.5 M), and iodine (I₂, 0.05 M) in water, and it was injected between the electrodes.

Calculation of the amount of Ru(II) complex immobilized on the Pt-TiO2 nanoparticles

To estimate the amount of immobilized Ru(II) complexes on Pt-TiO₂ nanoparticle, UV-Vis absorption spectra of each supernatant solution used for the immobilization reaction was measured (see Figure S1 shown below). The Ru(II) complex concentration used for the UV-Vis absorption spectral measurement (C_A) is estimated by Equation (1) based on the Lambert-Beer law.

 $A = C_A \cdot l \cdot \varepsilon \quad (Eq. \ 1)$ $A = \text{absorbance}, C_A = \text{concentration of the Ru(II) complex},$ $l = \text{cell path length (1 cm)}, \varepsilon = \text{molar absorption coefficient}$

The absorbance at the ¹MLCT absorption band of each complex (**RuCP**²: 456 nm, **RuP**⁴: 462 nm, **RuP**⁶: 463 nm,) and their corresponding molar absorption coefficients (**RuCP**²: 14,600; **RuP**⁴: 15,900; **RuP**⁶: 19,600) enable us to estimate the concentration of the Ru(II) complex that was not immobilized in the reaction. Since a 50-fold diluted aqueous solution was used in each measurement, the concentration of the original supernatant solution (C_B) is calculated by $C_B = C_A \times 50$. The total volume of the supernatant solution is 6.05 mL (see the Experimental section). Thus, the amount of Ru(II) complexes in the supernatant solution (M_S) is estimated by Equation (2).

$$M_s = C_B \times \frac{6.05}{1000} \text{ (mol)} \text{ (Eq. 2)}$$

Finally, the molar amount of the Ru(II) complex immobilized on the TiO₂ surface (M_i) can be estimated by Equation (3).

$$M_i = M_o - M_s \text{ (mol) } (Eq. 3)$$

where M_o denotes the molar amount of the Ru(II) complex in the 1.25 mM Ru(II) aqueous solution used for the immobilization reaction. The results are summarized in Table S1.

	RuCP ² @Pt-TiO ₂	RuCP ² -Zr-RuP ⁶ @Pt-TiO ₂		RuCP ² -Zr-RuP ⁴ -Zr-RuP ⁶ @Pt-TiO ₂			
	1 st layer (RuCP ²)	2 nd outer layer (RuCP ²)	1 st inner layer (RuP ⁶)	3 rd outer layer (RuCP ²)	2 nd middle layer (RuP ⁴)	1 st inner layer (RuP ⁶)	
A	0.098	0.120	0.328	0.264	0.154	0.328	
$C_B (\mathrm{mM})$	0.335	0.411	0.837	0.904	0.485	0.837	
M_i (µmol)	5.47	5.01	2.44	2.03	4.57	2.44	

Table S1. Absorbance of each supernatant solution and the calculated C_B and M_i values.

Calculation of the surface coverage of Ru(II) complexes per unit area of TiO₂

Assuming that the TiO_2 nanoparticles are spherical, we simply calculated the surface area on the TiO_2 nanoparticle (S_m) using Equation (4). In these calculations, the effect of the loaded Pt co-catalyst was omitted.

$$S_m = 4 \cdot \pi \cdot \left(\frac{a}{2} \times 10^{-7}\right)^2$$
 (cm² per one particle) (*Eq.* 4)

a = Averaged particle diameter of TiO₂ nanoparticle (15 nm)

Since the calculated surface area (S_m) based on Equation (4) corresponds to only one TiO₂ nanoparticle, it is necessary to determine the number of TiO₂ nanoparticles (P_t) contained in 30 mg to estimate the total surface area of TiO₂ (S_t) used in the immobilization reaction of the Ru(II) complexes. The total volume of 30 mg of TiO₂ nanoparticles (V_t) can be calculated using Equation (5) based on the density of TiO₂ (anatase TiO₂ = 3.90 g/cm³).

$$V_t = \frac{30 \times 10^{-3} \text{ (g)}}{3.90 \text{ (g/cm^3)}} \text{ (cm^3)} \text{ (Eq. 5)}$$

The number of TiO₂ nanoparticles (P_t) in 30 mg is also estimated using Equations (6) and (7) based on the volume of one TiO₂ nanoparticle (V_m) and the total volume (V_t).

$$V_m = \frac{4}{3} \cdot \pi \cdot \left(\frac{a}{2} \times 10^{-7}\right)^3 \text{ (cm}^3 \text{ per one particle) } (Eq. 6)$$
$$P_t = \frac{V_t}{V_m} \quad (Eq. 7)$$

Then, the total surface area of 30 mg of $TiO_2(S_t)$ can be estimated by Equation (8).

$$S_t = S_m \times P_t \ (\mathrm{cm}^2) \ (Eq.\ 8)$$

The amount of immobilized Ru(II) complexes per unit area of TiO₂ (Surface coverage: *N*) is estimated by Equation (9) based on the amount of immobilized Ru(II) complex (M_i) and the total surface area of 30 mg of TiO₂ (S_t). The estimated *N* and M_i values are summarized in Table 1.

$$N = \frac{M_i}{S_t} \; (\text{mol/cm}^2) \; (Eq. \; 9)$$

Figure S1. UV-Vis absorption spectra of the supernatant solutions at 298 K. (a) **RuCP**²@Pt-TiO₂, (b) **RuCP**²-Zr-**RuP**⁶@Pt-TiO₂, and (c) **RuCP**²-Zr-**RuP**⁴-Zr-**RuP**⁶@Pt-TiO₂. Note that each solution (1 mL) was diluted to 50 mL by the addition of deionized water before the spectral measurement.

Figure S2. (a) ¹H NMR and (b) emission spectra of the supernatant solution (black lines) obtained from the immobilization reaction of $RuCP^2$ for the synthesis of $RuCP^2$ -Zr- RuP^6 @Pt-TiO₂ by ultracentrifugation. Blue and red lines are the spectra of RuP^6 and $RuCP^2$ in the aqueous solution.

Figure S3. Particle diameter distributions estimated by the dynamic light scattering method for (a) $RuCP^2$ @Pt-TiO₂, (b) $RuCP^2$ -Zr- RuP^6 @Pt-TiO₂, and (c) $RuCP^2$ -Zr- RuP^6 @Pt-TiO₂ nanoparticles in the diluted HCl aqueous solution (pH = 2).

Figure S4. Experimental PXRD patterns of TiO₂, Pt-TiO₂, RuCP²@Pt-TiO₂, RuCP²-Zr-RuP⁶@Pt-TiO₂, and RuCP²-Zr-RuP⁴-Zr-RuP⁶@Pt-TiO₂ nanoparticles (Pt = 5wt%) in the solid state at 293 K. The red asterisks show the diffraction peaks derived from Pt cocatalyst loaded on the surface of TiO₂ nanoparticle.

Photocatalyst	$TiO_2 (nm)^a$	$Pt(nm)^a$
TiO ₂	21.3(1)	-
Pt-TiO ₂	21.4(2)	6.0(7)
RuCP ² @Pt-TiO ₂	21.8(1)	6.2(7)
RuCP ² -Zr-RuP ⁶ @Pt-TiO ₂	21.3(2)	6.5(6)
RuCP ² -Zr-RuP ⁴ -Zr-RuP ⁶ @Pt-TiO ₂	21.7(2)	6.3(9)

Table S2. Estimated particle diameters of TiO₂ and Pt cocatalyst.

^{*a*} Diameters were estimated based on the diffraction peaks observed at 25.2° for TiO₂ and 46.2° for Pt cocatalyst (see Figure S4). The peak fitting was done by Pseudo Volgt function.

Figure S5. Transmission electron microscopic (TEM) images of (a) **RuCP²-Zr-RuP⁴-Zr-RuP**⁶@5wt%Pt-TiO₂ and (b) **RuCP²-Zr-RuP⁴-Zr-RuP**⁶@1wt%Pt-TiO₂. Red arrows indicate the Pt cocatalysts loaded on the surface of TiO₂.

Figure S6. (a) Photocatalytic H₂ evolution reactions driven by $RuCP^2$ -Zr- RuP^4 -Zr- RuP^6 @Pt-TiO₂ (blue) or $RuCP^2$ @Pt-TiO₂ (red) in the presence of 0.5 M KI as the electron donor (100 µM Ru(II) dye, initial pH = 2.0, λ = 470 ± 10 nm). Closed circles and open triangles show the results of 1st and 2nd runs of the same nanoparticles. After the 1st run, the reaction solution was replaced by freshly prepared 0.5 M KI aqueous solution. (b) ¹H NMR (aromatic region) and (c) emission spectra of the supernatant solutions obtained after the 1st reaction of RuCP²-Zr-RuP⁴-Zr-RuP⁶@Pt-TiO₂ or RuCP²@Pt-TiO₂ by ultracentrifugation. Black lines in (b) are the spectra of RuCP² and RuP⁶ in D₂O solvent. Black line in (c) shows the emission spectrum of RuCP² solution.

Figure S7. UV-Vis absorption spectral changes of the reaction solutions containing (a) **RuCP**²@Pt-TiO₂, (b) **RuCP**²-Zr-**RuP**⁶@Pt-TiO₂, or (c) **RuCP**²-Zr-**RuP**⁶@Pt-TiO₂ nanoparticles and 0.5 M KI (black) before and (red) after photocatalytic H₂ evolution reaction for 6 h. The Ru(II)-PS-multilayered Pt-TiO₂ nanoparticles were removed by ultracentrifugation and each supernatant solution (1 mL) was diluted to 10 mL by the addition of water before the spectral measurement.

Entry ^a	Photocatalyst	Electron Donor	ED concentration	Light irradiation	Evolved H ₂ ^b
		(ED)			
1	RuCP ² -Zr-RuP ⁶ @Pt-TiO ₂	KI	0.5 M	Yes	Yes
2	RuCP ² -Zr-RuP ⁶ @Pt-TiO ₂	KBr	0.5 M	Yes	-
3	RuCP ² -Zr-RuP ⁶ @Pt-TiO ₂	NaI	0.5 M	Yes	Yes
4	RuCP ² -Zr-RuP ⁶ @Pt-TiO ₂	CsI	0.5 M	Yes	Yes
5	RuCP ² -Zr-RuP ⁶ @Pt-TiO ₂	[Cu(dmp) ₂]I	Saturated	Yes	Yes
6	RuCP ² -Zr-RuP ⁶ @Pt-TiO ₂	[Cu(dmp) ₂]Cl	Saturated	Yes	-
7	RuCP ² -Zr-RuP ⁶ @Pt-TiO ₂	_	-	Yes	-
8 ^c	RuCP ² -Zr-RuP ⁶ @Pt-TiO ₂	[Cu(dmp) ₂]I	Saturated	-	-
9 ^d	-	[Cu(dmp) ₂]I	Saturated	Yes	-
10	RuCP ² -Zr-RuP ⁶ @Pt-TiO ₂	[Co(bpy) ₃]Cl ₂	3 mM	Yes	-

Table S3. Control experiments of photocatalytic hydrogen evolution of RuCP²-Zr-RuP⁶@Pt-TiO₂.

^{*a*} Reaction conditions: [Ru] = 100 μ M in 20 mM CH₃COOH / CH₃COONa buffer aqueous solution (pH = 5, 5 mL) under blue LED light irradiation (λ = 470 ± 10 nm) for 6 h. ^{*b*} Gas in the head space was analyzed qualitatively by Gas Chromatography (GC). "Yes" indicates that the evolved amount of H₂ was larger than the GC detection limit.

Table S4. Zeta-potentials of Ru(II)-PS-immobilized nanoparticles in the absence/presence of 0.5 M KI aqueous solution (pH = 2.0).

Photocatalyst	without KI (mV)	with 0.5 M KI (mV)	with 0.5 M KBr (mV)
RuCP ² @Pt-TiO ₂	-0.36	+3.6	-
RuCP ² -Zr-RuP ⁶ @Pt-TiO ₂	+45	-1.9	+4.00
RuCP ² -Zr-RuP ⁴ -Zr-RuP ⁶ @Pt-TiO ₂	+38	-75	+7.46

Figure S8. Triiodide ion-concentration-dependence of the photocatalytic H₂ evolution reaction of **RuCP²-**Zr-**RuP⁶**@Pt-TiO₂ nanoparticles (100 μ M of the Ru(II) complex) in 0.5 M KI aqueous solution. Black and red triangles show the results in the absence and presence of 0.2 mM I₃⁻, respectively. A blue LED light ($\lambda = 470 \pm 10$ nm) was used as the irradiation source. The initial pH was adjusted to be 2.0 by adding HCl aq.

Table S5. Molar absorptivity and the absorbance of Ru(II)-PS-multilayered Pt-TiO₂ and triiodide at 470 nm after 6 h reaction solution.

	Molar absorptiv	vity (L·cm ⁻¹ ·mol ⁻¹)	Absorbance after 6 h reaction		
Photocatalyst	I_3^-	Ru(II) dye	(II) dye I_3^- Ru(II)		
RuCP ² @Pt-TiO ₂	754	14600	< 0.01	1.46	
RuCP ² -Zr-RuP ⁶ @Pt-TiO ₂	754	16249	0.08	1.62	
RuCP ² -Zr-RuP ⁴ -Zr-RuP ⁶ @Pt-TiO ₂	754	16610	0.26	1.66	

Figure S9. SEM images of (a, d) **RuCP**²@TiO₂-ITO, (b, e) **RuCP**²-Zr-**RuP**⁶@TiO₂-ITO, (c, f) **RuCP**²-Zr-**RuP**⁴-Zr-**RuP**⁶@TiO₂-ITO. The scale bar of (a-c) and (d-f) is 1 μm and 100 nm, respectively.

Figure S10. (a) SEM and (b-f) EDX images of RuCP²-Zr-RuP⁴-Zr-RuP⁶@TiO₂-ITO of the elements (b) Ru, (c) Zr,
(d) P, (e) Ru and Zr, (f) Ru , Zr, and Ti. Each scale bar is 1 μm.

Figure S11. XRF spectra of ITO substrate (pink), **RuCP**²@TiO₂-ITO (black), **RuCP**²-Zr-**RuP**⁶@TiO₂-ITO (red), **RuCP**²-Zr-**RuP**⁴-Zr-**RuP**⁶@TiO₂-ITO (blue) in the solid state with (a) 20 kV and (b) 50 kV excitation. All spectra of Ru(II)-PS-multilayered TiO₂-ITO electrodes were normalized by using Ti Kβ peak.

Table S6.	Immobilized	amount	of Ru(II)	photosensitizer	on TiO2-	-ITO p	photoelectrode
-----------	-------------	--------	-----------	-----------------	----------	--------	----------------

	Weight percentage of elements						
Photoelectrode	Р	Ti	Zr	Ru			
RuCP ² -@TiO ₂ -ITO	1.75	97.99	_a	0.26			
RuCP ² -Zr-RuP ⁶ @TiO ₂ -ITO	7.16	91.26	1.26	0.32			
RuCP ² -Zr-RuP ⁴ -Zr-RuP ⁶ @TiO ₂ -ITO	12.87	85.13	1.58	0.42			

^{*a*} Comparable intensity to that of bare ITO electrode was observed.

	$J_{SC} \left(mA \ / \ cm^2 \right)$		V _{oc} (V)		FF		PCE (%)	
Photoelectrode ^c	MAN ^a	Water ^b	MAN ^a	Water ^b	MAN ^a	Water ^b	MAN ^a	Water ^b
RuCP ² @TiO ₂ -ITO	0.063	-	0.148	-	0.24	-	0.002	-
RuCP ² -Zr-RuP ⁶ @TiO ₂ -ITO	0.475	0.011	0.552	0.070	0.52	0.28	0.136	2.7 ×10 ⁻⁴
RuCP ² -Zr-RuP ⁴ -Zr-RuP ⁶ @TiO ₂ -ITO	0.230	0.042	0.547	0.151	0.59	0.34	0.075	2.7 ×10 ⁻³

Table S7. The photovoltaic data of DSSCs based on Ru(II)-PS-multilayered TiO₂-ITO photoanodes in methoxyacetonitrile (MAN) and water I^{-}/I_{3}^{-} electrolyte solutions.

^{*a*} LiI (0.1 M), I₂ (0.05 M), and 0.5 M *t*-butyl-pyridine in methoxy-acetonitrile under AM1.5G irradiation. ^{*b*} KI (0.5 M), and I₂ (0.05 M), in water (pH = 2) under blue light irradiation ($\lambda_{ex} = 470$ nm, 800 W/m²). ^{*c*} A PEDOT-TMA coated ITO electrode was used as the counter electrode.

Figure S12. (a) IPCE action spectra of (black) $RuCP^2$ @TiO₂-ITO, (red) $RuCP^2$ -Zr-RuP⁶@TiO₂-ITO, or (blue) $RuCP^2$ -Zr-RuP⁴-Zr-RuP⁶@TiO₂-ITO as the photoanode in the presence of LiI (0.1 M), I₂ (0.05 M), and 0.5 M *t*-butyl-pyridine in methoxy-acetonitrile under AM1.5G irradiation. A PEDOT-TMA coated ITO electrode was used as the counter electrode. (b) UV-Vis diffuse reflectance spectra of these photoelectrodes in air. (c) UV-Vis absorption spectra of (red) RuP⁶, (blue) RuP⁴, and (black) RuCP² dyes in water (pH = 2.2).

Scheme S1. Schematic diagram showing a plausible energy and electron transfer mechanism of RuCP²-Zr-RuP⁶@Pt-TiO₂. Redox potentials of bromide, iodide species, $[Co(bpy)_3]^{3+/2+}$ and $[Cu(dmp)_2]^{2+/1+}$ complexes are interfered from the literatures.^{2,3,4}

References.

- 1. Y. Kijitori, M. Ikegami, T. Miyasaka, Chem. Lett., 2007, 36, 190-191.
- 2. L. Troian-Gautier, M. D. Turlington, S. A. M. Wehlin, A. B. Maurer, M. D. Brady, W. B. Swords, G. J. Meyer, Halide Photoredox Chemistry, *Chem. Rev.* 2019, **119**, 4628-4683.
- 3. Y. Sasaki, H. Kato, A. Kudo, J. Am. Chem. Soc. 2013, 135, 5441-5449.
- Y. Saygili, M. Söderberg, N. Pellet, F. Giordano, Y. Cao, A. B. Muñoz-García, S. M. Zakeeruddin, N. Vlachopoulos, M. Pavone, G. Boschloo, L. Kavan, J.-E. Moser, M. Grätzel, A. Hagfeldt, M. Freitag, *J. Am. Chem. Soc.* 2016, **138**, 15087-15096.