Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2020

Highly Mismatched NiO₂-to-Pd Hetero-Structure as an Efficient Nanocatalyst for Hydrogen Evolution Reaction

Authors: Dinesh Bhalothia,^a Lin Shuan,^b Yi-Jia Wu^a, Che Yan^a, Kuan-Wen Wang,^{b*} and Tsan-Yao Chen ^{a, c, d, e*}

Affiliations:

^a Department of Engineering and System Science, National Tsing Hua University, Hsinchu 30013, Taiwan

^{b.} Institute of Materials Science and Engineering, National Central University, Taoyuan 32001, Taiwan

^c Institute of Nuclear Engineering and Science, National Tsing Hua University, Hsinchu 30013, Taiwan

^{d.} Hierarchical Green-Energy Materials (Hi-GEM) Research Centre, National Cheng Kung University, Tainan 70101, Taiwan

^{e.} Higher Education Sprout Project, Competitive Research Team, National Tsing Hua University, Hsinchu 30013, Taiwan

*Corresponding Author:

Tsan-Yao Chen

Email: <u>chencaeser@gmail.com</u>

Tel: +886-3-5715131 # 34271

FAX: +885-3-5720724

1. Quantitative XRD parameters of NiPd-CNT and Pd-CNT NCs.

NC	d ₍₁₁₁₎ (Å)	d ₍₂₀₀₎ (Å)	d ₍₂₂₀₎ (Å)	d _{NiPd3 (20-2-2)} (Å)	D ₍₁₁₁₎ (Å)	D ₍₂₀₀₎ (Å)	D ₍₂₂₀₎ (Å)	D _{NiPd3 (20-2-2)} (Å)
NiPd-CNT	2.276	1.991	1.395	1.528	75.6	52.3	31.7	27.5
Pd-CNT	2.278	1.984	1.392	N/A	86.6	64.4	61.1	N/A

 Table S1. Quantitative XRD parameters of NiPd-CNT and Pd-CNT NCs.

2. XPS analysis of Ni-CNT and NiPd-CNT nanocatalyst at Ni-2p orbitals.

To further examine the structural changes in Ni-crystal, X-ray photoelectron spectroscopy (XPS) has been applied at Ni-2p orbitals of experimental NCs. Figure S1 depicts the fitted XPS spectra in the Ni-2p region of the Ni-CNT and NiPd-CNT NCs. In a Ni-2p spectrum, apparently, two peaks around at 855.7 and 873.5 eV are corresponding to the binding energies of Ni²⁺- $2p_{3/2}$ and Ni²⁺- $2p_{1/2}$, respectively. Simultaneously, two satellite peaks nearly at 861 eV and 880 eV could be attributed to the oxidation products on the surface¹. Meanwhile, a weak shake up peak centered nearly at 852.7 eV is corresponding to metallic state of Ni, which reveals that most of the Ni is present in form of NiO₂. The binding energies of Ni (0), Ni²⁺- $2p_{3/2}$ and Ni²⁺- $2p_{\frac{1}{2}}$ peaks for experimental NCs are summarized in **Table S2**. Accordingly, although the difference in binding energies of the Ni (0), Ni²⁺- 2p_{3/2} and Ni²⁺- 2p_{1/2} orbitals for Ni-CNT and NiPd-CNT NCs are not obvious. However, peaks are slightly shifted to lower energy values for NiPd-CNT NC as compared to that of Ni-CNT NC. This is acceptable because of increased index of electron relocation from Ni to Pd atoms in NiPd-CNT NC. Such a scenario is further confirmed by intensity difference of various peaks in both NCs. Intensity of emission peaks in a XPS spectrum is positively related to electron density of the target atoms. Therefore, the comparatively higher intensity in the XPS spectra of Ni-CNT reflects its most abundant Ni-2p electrons. Whereas, relatively decreased intensity observed in case of NiPd-CNT NC, which itself is a result of high index of electron relocation from Ni to Pd-atoms. Such characteristics are consistent with Pd-3d orbital XPS findings.

Figure S1. XPS spectra of Ni-CNT and NiPd-CNT nanocatalyst at Ni-2p orbitals.

Table S2. XPS determined binding energy of experimental NC at Ni-2p orbital

Samples	Binding Energies			
	Ni (0)	Ni ²⁺ 2p _{3/2}	Ni ²⁺ 2p _{1/2}	
NiPd-CNT	852.778	855.902	873.643	
Ni-CNT	852.985	856.011	873.745	

3. Cyclic voltammogram (CV) of NiPd-CNT NC compared with control samples (Ni-CNT and Pd-CNT) and commercial J.M.-Pt/C NC.

Figure S2. Cyclic voltammogram (CV) of NiPd-CNT NC compared with control samples (Ni-CNT and Pd-CNT) and commercial J.M.-Pt/C NC.

4. ICP-AES determined composition ratios of experimental nanocatalysts

Table S3. ICP-AES determined composition ratios of experimental nanocatalysts

Samples	Ni (wt.%)	Pd (wt.%)	
NiPd-CNT	9.287	16.95	

References

1. D. Bin, B. Yang, F. Ren, K. Zhang, P. Yang and Y. Du, *Journal of Materials Chemistry A*, 2015, **3**, 14001-14006.