Supporting information

In situ cross-linked vinylphosphonic acid-modified aminosilicon

oxide gel electrolyte for proton exchange membrane fuel cells

Henghui Huang^{a,b}, Liwen Ni^a, Jiaoyan Xu^{a,b}, Xiaojun xie, Li Zhang^b, Cheng Yang^b, Jiantao Fan^{*a,b}, Hui Li^{*a,b}, Haijiang Wang^{b,c}

^a Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, Guangdong, China

^b Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Shenzhen 518055, China

^c Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China

Fig.S1 Raman spectra of the APES and VPA-ASOP.

Fig.S2 SEM images of (a) PFSA membrane, (b)1VPA-ASOCP/PFSA, (c) 2VPA-ASOCP/PFSA, (d) 5VPA-A

SOCP/PFSA.

Fig. S3 EDS mapping for 2VPA-ASOCP/PSA membrane.

elements	wt%	wt% Sigma		
С	24.64	0.26		
Ν	0.14	0.02		
Ο	11.24	0.16		
F	59.69	0.36		
Si	0.30	0.03		
Р	0.41	0.05		
S	3.58	0.08		
total	100.00			

Fable 1 Elements content of VPA-ASOCP/PFSA	composite membranes based on EDS
---	----------------------------------

Fig. S4 Stress-strain curves of PFSA membrane and VPA-ASOCP/PFSA composite membranes.

Membrane	Young's modulus(Mpa)		Tensile strength (Mpa		Elongation at		
			break (%)				
)						
	MD	TD	MD	TD	MD	TD	
5VPA-	275.46±16.2	256.94±16.1	41.19±1.8	40.67±2.3	204.5±21.8	229.4±19.8	
ASOCP/PFSA	4	2	6	4			
2VPA-	269.75±15.6	248.25±12.8	38.24±1.2	38.55±2.1	191.6±13.9	104.4±22.1	
ASOCP/PFSA	8	9	3	4			
1VPA-	246.56±12.4	232.64±13.6	37.84±1.5	37.97±1.5	185.4±26.3	194.7±19.0	
ASOCP/PFSA	3	9	2	9			
PFSA	220.35±14.8	222.74±12.2	36.86 ± 2.0	36.96±2.3	174.6±12.5	178.6±17.4	
	3	8	1	2			

Fig. S5 EIS for the membranes: (a) PFSA, (b) 1VPA-ASOCP/PFSA, (c) 2VPA-ASOCP/PFSA, and (d) 5VPA-ASOCP/PFSA at 1 A·cm⁻² for various RHs.

Fig. S6 EIS for the membranes: (a) PFSA, (b) 1VPA-ASOCP/PFSA, (c) 2VPA-ASOCP/PFSA, and (d) 5VPA-ASOCP/PFSA under 50% RH.