## **Electronic Supporting information for**

## Trace tungsten and iron-doped nickel hydroxide nanosheets for an efficient oxygen evolution reaction

Chun Li, Peng Tian\*\*, Hongchang Pang, Weitao Gong, Junwei Ye, Guiling Ning\*

State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China \*Corresponding author. E-mail address: ninggl@dlut.edu.cn . \*\*Corresponding author. E-mail address: tianpeng@dlut.edu.cn

## CAPTIONS

| Calculation                                                                                | S1  |
|--------------------------------------------------------------------------------------------|-----|
| SEM images of samples                                                                      | S3  |
| EDX spectrum                                                                               | S4  |
| HR-TEM images and corresponding SAED patterns                                              | S5  |
| STEM images and the corresponding elemental mapping                                        | S5  |
| XPS fine structures spectrum and survey spectra                                            | S6  |
| XPS spectrum before and after OER                                                          | S10 |
| LSV error analysis curves                                                                  | S11 |
| LSV curves of other catalyst materials                                                     | S11 |
| LSV curves for different Fe,W atoms ratio                                                  | S12 |
| LSV curves of samples doping with/without B element                                        | S12 |
| Cyclic voltammograms of samples at different scan rates                                    | S13 |
| OER measures at different temperature                                                      | S14 |
| LSV curves of samples with different annealed temperature                                  | S15 |
| SEM images of Fe <sub>0.03</sub> -W <sub>0.03</sub> -Ni LDH <sup>B</sup> samples after OER | S16 |
| ICP data                                                                                   | S16 |
| Comparison of other relevant OER catalyst materials                                        | S17 |

## Calculation

Equation S(1) XRD Williamsone-Hall methods

We could get the information about lattice strain and crystalline size based on Williamson–Hall equation through the full width at half maximum (FWHM) of the XRD peak. The W-H equation is (1),

$$\frac{\beta_{hkl}cos\theta}{\lambda} = \frac{k\lambda}{D} + 4\varepsilon sin\theta \tag{1}$$

where D is particle size in nanometer,  $\varepsilon$  is the strain component without dimensionless, k is a constant equal to 0.94,  $\lambda$  is wavelength of radiation (1.54056 A° for Cu K $\alpha$ radiation),  $\beta_{hkl}$  is diffraction peak width at half-maximum intensity, and  $\theta$  is diffraction angle. By plotting  $\beta_{hkl}$ cos $\theta$  versus 4sin $\theta$ , we provides more of the crystal structure details, such as the slope and y-intersect of the fitted line represent strain and particle size parameter, respectively.

Equation S(2) To measure electrochemical capacitance, the potential was swept between 0.28 and 0.38 V versus Hg/HgO at ten different scan rates (10, 20, 30, 40, 50, 60, 70, 80, 90 and 100), as shown in Figure S18. The measured capacitive currents are plotted as a function of scan rate and the linear slope is equivalent to twice of the C<sub>dl</sub>. Ni(Fe)O<sub>x</sub>H<sub>y</sub> have been determined with an areal capacitance of ~80  $\mu$ F cm<sup>-2</sup> in the charged state. The specific capacitances for Carbon Clothes, Ni LDH, Fe<sub>0.03</sub>-Ni LDH, Fe<sub>0.03</sub>W<sub>0.03</sub>-Ni LDH and Fe<sub>0.03</sub>W<sub>0.03</sub>-Ni LDH<sup>B</sup> are determined as 1.8, 1.9, 1.5, 1.7 and 2.9 mF cm<sup>-2</sup>, respectively. ECSA is calculated as follows: (2)

$$A_{ECSA} = \frac{C_{dl}^{sample}}{80\mu F^{NiO}}$$

Equation S(3) For temperature-dependent measurements, the kinetics of the OER are increased at elevated temperatures from 20°C to 60°C, reflecting the temperature dependence of the chemical rate constant, which is approximately proportional to  $\exp(-\Delta H^*/kT)$ . The Arrhenius equation is (3), (3)

$$\frac{\partial(\log i_k)}{\partial(1/T)} = \frac{-\Delta H^*}{2.3R} (g = 300mV)$$

where  $\Delta H^*$  is the apparent enthalpy of activation (here after simply termed as the activation energy),  $i_k$  is the kinetic current at  $\eta = 300$  mV, T is the temperature, and R is the universal gas constant.



Fig. S1 SEM image of carbon fiber clothes



Fig. S2 SEM images of  $Fe_{0.03}W_{0.03}$ -Ni LDH samples



Fig. S3 SEM images of Fe<sub>0.03</sub>-Ni LDH samples.



Fig. S4 EDX spectrum. a) Fe\_{0.03}W\_{0.03}-Ni LDH^B b) Post-OER Fe\_{0.03}W\_{0.03}-Ni LDH^B



Fig. S5 (a-d) HR-TEM images of  $Fe_{0.03}$  Ni LDH,  $Fe_{0.03}W_{0.03}$ -Ni LDH,  $Fe_{0.03}W_{0.03}$ -Ni LDH<sup>B</sup>, post-OER  $Fe_{0.03}W_{0.03}$ -Ni LDH<sup>B</sup> and corresponding SAED patterns (insert).



Fig. S6 Scanning transmission electron microscopy (STEM) images and the corresponding elemental mapping of Ni, Fe, W, and O. a)  $Fe_{0.03}W_{0.03}$ -Ni LDH; b) post-OER  $Fe_{0.03}W_{0.03}$ -Ni LDH<sup>B</sup>.



Fig. S7 a-e) XPS fine structures spectrum for  $Fe_{0.03}W_{0.03}$ -Ni LDH<sup>B</sup> in Ni 2p, Fe 2p, W 4f, O 1s and B 1s regions. f) XPS survey spectra of  $Fe_{0.03}W_{0.03}$ -Ni LDH<sup>B</sup>.



Fig. S8 XPS spectrum for Fe $_{0.03}$ -Ni LDH, Fe $_{0.03}$ W $_{0.03}$ -Ni LDH and Fe $_{0.03}$ W $_{0.03}$ -Ni LDH<sup>B</sup> in O1s regions.



Fig. S9 XPS spectrum for a)  $Fe_{0.03}W_{0.03}$ -Ni LDH, b)  $Fe_{0.03}W_{0.03}$ -Ni LDH<sup>B</sup> and c)  $WO_3^{[38]}$  in W4f regions.



Fig. S10 XPS spectrum for a)  $Fe_{0.03}W_{0.03}$ -Ni LDH, b)  $Fe_{0.03}W_{0.03}$ -Ni LDH<sup>B</sup> and c)  $Fe_{0.03}W_{0.03}$ -Ni LDH<sup>B</sup> after OER in B1s regions.



Fig. S11 XPS spectra for  $Fe_{0.03}W_{0.03}$ -Ni LDH<sup>B</sup> in a) Ni2p and b) Fe2p regions before and after oxygen evolution reaction.



Fig. S12 Four independent OER polarization curves and scale bars of a,c)  $Fe_{0.03}W_{0.03}$ -Ni LDH and b,d)  $Fe_{0.03}W_{0.03}$ -Ni LDH<sup>B</sup> catalysts on carbon clothes.



Fig. S13 LSV (Linear scan voltammetry) for more OER catalyst materials.



Fig. S14 a,b) LSV curves for different Fe,W atoms ratio of Fe<sub>x</sub>W<sub>y</sub>-Ni LDH<sup>B</sup> OER catalyst materials.



Fig. S15 LSV curves of samples doping with/without B element.



Fig. S16 a-e) Cyclic voltammograms of Carbon Clothes, Ni LDH,  $Fe_{0.03}$ -Ni LDH,  $Fe_{0.03}W_{0.03}$ -Ni LDH and  $Fe_{0.03}W_{0.03}$ -Ni LDH<sup>B</sup> at scan rates from 10 to 100 mV S<sup>-1</sup>. f) Double layer capacitance values (Cdl) of Carbon Clothes, Ni LDH,  $Fe_{0.03}$ -Ni LDH,  $Fe_{0.03}W_{0.03}$ -Ni LDH and  $Fe_{0.03}W_{0.03}$ -Ni LDH<sup>B</sup>.



Fig. S17 The OER LSV curve of a)  $Fe_{0.03}$ -Ni LDH, b)  $Fe_{0.03}W_{0.03}$ -Ni LDH catalysts in 1 M KOH aqueous electrolyte loaded on carbon clothes with scan rate 5 mV s<sup>-1</sup> at 20°C, 30°C, 40°C, 50°C and 60°C, respectively.



Fig. S18 a,b) LSV curves of  $Fe_{0.03}W_{0.03}$ -Ni LDH and  $Fe_{0.03}W_{0.03}$ -Ni LDH<sup>B</sup> with different annealed temperature. c) XRD pattern of sample after 400°C annealed.



Fig. S19 a,b) SEM images of Fe<sub>0.03</sub>-W<sub>0.03</sub>-Ni LDH<sup>B</sup> samples after OER.

Table S1 ICP data of Fe $_{0.03}W_{0.03}$ -Ni LDH, Fe $_{0.03}W_{0.03}$ -Ni LDH<sup>B</sup> and Fe $_{0.03}W_{0.03}$ -Ni LDH<sup>B</sup> after OER

| materials                       | elements | Concentration (mg/L) | molar ratio (%) |
|---------------------------------|----------|----------------------|-----------------|
| Fe0.03W0.03-Ni LDH              | Fe       | 3.572                | 3.97            |
|                                 | W        | 5.792                | 1.96            |
|                                 | Ni       | 88.85                | 94.07           |
| Fe0.03W0.03-Ni LDH <sup>B</sup> | Fe       | 2.267                | 4.00            |
|                                 | W        | 4.364                | 2.34            |
|                                 | Ni       | 53.86                | 93.66           |
|                                 | В        | 4.769                |                 |
| Fe0.03W0.03-Ni LDH <sup>B</sup> | Fe       | 4.99                 | 4.62            |
| after OER                       | W        | 9.19                 | 2.59            |
|                                 | Ni       | 105.3                | 92.79           |
|                                 | В        | 1.362                |                 |

| Samples                                                         | $\eta(mV)$ on carbon cloth | η(mV) on<br>nickel foam         | η(mV) on<br>gold foam | References                                                   |
|-----------------------------------------------------------------|----------------------------|---------------------------------|-----------------------|--------------------------------------------------------------|
| Fe0.03W0.03-Ni LDH <sup>B</sup>                                 | 205                        | 250(50 mA<br>cm <sup>-2</sup> ) |                       | This work                                                    |
| Gel-FeCoW                                                       |                            | _                               | 191                   | <i>Science</i> <b>2016</b> , <i>352</i> , 333.               |
| CoFeW clusters                                                  | 205                        | —                               | 192                   | J. Am. Chem. Soc. <b>2019</b> , 141, 232.                    |
| W-doped NiCoP                                                   | _                          | 330(50 mA<br>cm <sup>-2</sup> ) | _                     | J Mater Chem A<br>2019, 7, 16859                             |
| Ball-milling NiFe<br>NP                                         | 270(glassy<br>carbon)      | —                               | _                     | Angew Chem Int<br>Edit. <b>2019</b> , 58, 736.               |
| Dry exfoliation<br>NiFe NP                                      | 276(glassy<br>carbon)      | _                               | _                     | Angew Chem Int<br>Edit. <b>2017</b> , 56,5867.               |
| Fe <sub>0.09</sub> Co <sub>0.13</sub> -NiSe <sub>2</sub><br>LDH | 251                        | —                               | —                     | Adv Mater. <b>2018</b> , 30,<br>1802121.                     |
| NiCoP/NiFe LDH                                                  | _                          | 220                             | _                     | <i>Adv. Funct. Mater.</i> <b>2018</b> , <i>28</i> , 1706847. |
| NaBH4 soaked<br>Fe-Co <sub>x</sub> Oy                           | _                          | 204                             | _                     | Nano Energy <b>2018</b> , 54, 238.                           |

Table S2 Comparison of OER performance in 1.0 M KOH for  $Fe_{0.03}$ - $W_{0.03}$ -Ni LDH<sup>B</sup> with other non-noble-metal electrocatalysts.