Supporting Information

Atomic Scale Insight on the Fundamental Mechanism of Mn Doped LiFePO₄

Fei Jiang¹, Ke Qu^{2,3†}, Mingshan Wang^{1*}, Junchen Chen¹, Yang Liu¹, Hao Xu¹, Yun

Huang¹, Jiangyu Li^{2*}, Peng Gao^{3*}, Jianming Zheng⁴, Mingyang Chen^{5,6*}, Xing Li^{1*}

¹ School of New Energy and Materials, Southwest Petroleum University, Chengdu, Sichuan 610500, China

² Shenzhen Key Laboratory of Nanobiomechanics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China

³ Electron Microscopy Laboratory, School of Physics, and International Center for Quantum Materials, Peking University, Beijing, China.

⁴ College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China

⁵Center for Green Innovation, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China

⁶ Beijing Computation Science Research Center, Beijing 100193, China.

[†] Dr. Ke Qu devotes equally to the first author.

Corresponding Authors: ustbwangmingshan@163.com (M. W); jy.li1@siat.ac.cn (J. L); p-gao@pku.edu.cn (P. G); mychen@ustb.edu.cn (M. C); lixing@swpu.edu.cn (X. L)

Figure S1 Cycling stabilities of LiFePO₄ (LFP) and Mn doped LiFePO₄ (Mn-LFP) with different Mn doping amount of 0.1%, 0.5% and 1.0% (weight percentage) cycled at 1C after 3 formations at C/10.

Figure S2 SEM images of the pristine LFP (a) and pristine Mn-LFP (b).

Figure S3 XRD patterns of the pristine LFP and the pristine Mn-LFP.

Figure S4 XPS survey spectra of the pristine LFP (**a**) and pristine Mn-LFP (**b**) powder samples.

Figure S5(a) - (b) Cyclic voltammetry (CV) curves of the LFP and Mn-LFP, between 2.5 - 4.2 V, with scan rates of 0.1, 0.2, 0.5, 0.8 and 1 mV s⁻¹.

Figure S6(a) – (b) Relationship between the Z_{re} and the frequency of the pristine LFP versus Mn-LFP at the 1st, 50th, 100th, 200th, 400th, and 500th cycle. The slope, which is the Warburg impedance coefficient, was used to calculate the lithium-ion diffusion coefficient.

Figure S7(a) HAADF-STEM image of cycled LFP, **(b)** - **(d)** and the corresponding EDS mapping of Fe, P and O. **(e)** - **(h)** Analogous HAADF-STEM image and the corresponding EDS mapping of Fe, P and O but for cycled Mn-LFP.

Figure S8 XPS survey spectra of the cycled LFP (a) and cycled Mn-LFP (b) cathodes.

Figure S9 XPS survey spectra of the SEI formed on the post 500 cycled Li metal anodes, tested against LFP (a), and tested against Mn-LFP (b).

Figure S10(a) - (b) XPS high resolution spectra of F 1s and O 1s in the SEI formed on the post 500 cycled Li metal anode tested against LFP. (c) - (d) The corresponding XPS high resolution spectra tested against Mn-LFP.

Figure S11 (a) - (b) SEM image and EDS elemental mapping of O, F, P and Fe for the SEI formed on the post 500 cycled Li metal anode tested against LFP. (c) - (d) The corresponding SEM image and EDS elemental mapping of O, F, P and Fe for the SEI tested against Mn-LFP.