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Figure S1: 'H NMR of 15 mM [Co(PY5Me2)(DMP-CN)](PFs). with 0.2 M DMP-CN in
deuterated acetonitrile . Peaks at 7.25 — 7.00 ppm and peak at 2.35 are for DMP-CN free ligand
added.
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Figure S2: 'H NMR of 15 mM [Co(PY5Mez)(DMP-CN)](PFe)s in deuterated acetonitrile with
0.2 M DMP-CN in CD3sCN. Two unintegrated peaks at 7.25 — 7.00 ppm and unintegrated peak at
2.35 are for DMP-CN free ligand added. Peak at 5.5 ppm is residual dichloromethane from the
synthesis.
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Figure S3: *H NMR of 10 mM [Co(PY5Me;)(ACN)](PFes)s complex in deuterated CD3CN. Peak
at 5.5 ppm is residual dichloromethane from the synthesis.
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Figure S4: Scan rate dependence of CV’s for 5 mM of [Co(PY5Me2)(DMP-CN)](PFs)2 measured
with 0.2 M DMP-CN in acetonitrile with 0.1 M TBAPFe.
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Figure S5: Peak anodic current (green) and peak cathodic (violet) as a function of the square root
of scan rate (v) for [Co(PY5Me2)(DMP-CN)](PFe)2.



8000
7000 /
6000 |
5000 d
4000 !

Intensity

3000

2000
1000 -
0

L e e e e e e e P T
430 425 420 415 410 405 400 395 390

Chemical shift / ppm

Figure S6: 'H NMR for Evan’s Method, of ferrocene proton signal (red) as a function of the
concentration of [Co(PY5Mez)(DMP-CN)](PFe)2 5.0 mM (orange), 9.0 mM (green), 13.0 mM
(blue), and 16.0 mM (purple). Measured in deuterated acetonitrile with 0.2 M DMP-CN.
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Figure S7: 'H NMR for Evan’s Method, of ferrocene signal as a function of
[Co(PY5Me2)(ACN)](PFs)2 complex blue (0 mM), violet (5.1 mM), green (9.4 mM), orange (13.0
mM), and red (16.0 mM).
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Figure S8 ATIR spectrum of the [Co(PY5Me2)(DMP-CN)](PFs)2 complex (green) and of the
[Co(PY5Me2)(DMP-CN)](PFs)s complex (purple).

The C=N stretching modes were analyzed by infrared spectroscopy using the attenuated total
reflection (ATIR) configuration on crystals of each complex. Upon inspection of the IR spectrum
for [Co(PY5Me2)(DMP-CN)](PFs). complex, one signal is present at 2166 cm™ for the isocyanide
stretch of the complex which is shifted from the signal of the free DMP-CN ligand (2118 cm™),
(Figure S8 ATIR spectrum of the [Co(PY5Me2)(DMP-CN)](res)2 complex (green) and of the
[Co(PY5Me2)(DMP-CN);PF6)3 complex (purple).). The increase in C=N frequency is due to the
antibonding character of the lone pair of the carbon being reduced by sigma donation to the Co(ll)

metal center which has a larger contribution than the weakening © backdonation. Upon oxidation,
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the [Co(PY5Me2)(DMP-CN)](PFs)s complex has three visible signals in the region that is typical
to cyanide functional groups. The signal at 2211 cm™ can be attributed to the cyanide stretching
mode while the two higher wavenumber signals can be attributed to acetonitrile bound in the
crystal lattice which agrees with the single crystal x-ray structure.! The increase in bond strength
from Cobalt (1) to Cobalt (I1l) is rationalized by the reduced m backdonation into the m*-

antibonding orbital increasing the bond order of the C=N bond of the Cobalt (III) complex.
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Figure S9: UV-visible spectrum of Co(PY5Mez)(DMP-CN)(PFs)2 (green) and of
Co(PY5Me2)(DMP-CN)(PFe)3 (purple). Spectra were collected in acetonitrile with 0.4 DMP-CN
present. Background was corrected for 0.4 M DMP-CN absorbance.



Table S1: Fitting parameters from TA measurements from bi-exponential equation. Results are average and error of 6 devices of each

electrolyte.
Electrolyte AAo Ax k1(10%) (ns?) Az k, (10°) (ns?) R2
Inert 0.12+0.02  0.35%0.02 1.2+21 0.45+ 0.06 5.4+35 0.89 +0.07
[Co(bpy)s]**?* 0.09+0.03 0.35+0.06 25+51 0.45 + 0.05 79+47 0.90 + 0.03
[Co(PY5Me;)(DMP-CN)]*¥*2  -0.04 £0.02  0.40 +0.09 2.7+4.1 0.50 + 0.08 11.9+10.2 0.7+0.1
[Co(PY5Me;)(ACN)3+2* 0.06 £0.02  0.42+0.04 2.0+25 0.43 +0.04 5.2 +3.9 0.93 +0.02
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Figure S10: Example Nyquist plots of full DSSCs at 100 mW cm fitted to the equivalent circuit.
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Figure S11: Equivalent circuit used to fit full dye-sensitized solar cells.
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Figure S12.: Chemical capacitance as a function of potential applied at each light intensity. The
potential is obtained by correcting the applied potential vs solution potential measured against
Fc*/Fc.
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Figure S13: Plot of current density vs. applied voltage curves under varying illumination
intensities for DSSCs containing the [Co(PY5Me2)(DMP-CN)(PFe)3/2 electrolyte.
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Figure S14: Plot of current density vs. applied voltage curves under illumination for DSSCs
containing [Co(PY5Me,)(DMP-CN)](PFg)s2 and [Co(bpy)s](PFs)ar electrolytes with a 6.5 um
thick film of 30 nm TiO2 nanoparticles. The electrolyte consisted of 0.15 M Co(ll), 0.015 M
Co(lll), 0.1 M LiPFg and 0.2 M DMP-CN for the [Co(PY5Me2)(DMP-CN)](PFe)s/2 electrolyte.
All other device preparations were the same as that within the main text.

Table S2.: Device parameters extracted from 5 devices (average and standard deviation) shown
in Figure S14.

Electrolyte Voc (V) Jse (MA cm™®) FF n
[Co(PY5Me;)(DMP-CN)](PFe)sz  0.58 % 0.01 77202 0.54 % 0.02 24+02
[Co(bpy)s](PFe)ar 0.48 £ 0.01 9.2+0.4 0.44 +0.04 19201

(1) Pace, E. L.; Noe, L. J. Infrared Spectra of Acetonitrile and Acetonitrile-D3. J. Chem.
Phys. 1968, 49 (12), 5317-5325.
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