Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2020

Low-Spin Cobalt(II) Redox Shuttle by Isocyanide Coordination

Austin L. Raithel, Tea-Yon Kim, Karl Nielsen, Richard J. Staples and Thomas W. Hamann

Supporting Information

Figure S1: ¹H NMR of 15 mM $[Co(PY5Me_2)(DMP-CN)](PF_6)_2$ with 0.2 M DMP-CN in deuterated acetonitrile . Peaks at 7.25 – 7.00 ppm and peak at 2.35 are for DMP-CN free ligand added.

Figure S2: ¹H NMR of 15 mM [Co(PY5Me₂)(DMP-CN)](PF₆)₃ in deuterated acetonitrile with 0.2 M DMP-CN in CD₃CN. Two unintegrated peaks at 7.25 - 7.00 ppm and unintegrated peak at 2.35 are for DMP-CN free ligand added. Peak at 5.5 ppm is residual dichloromethane from the synthesis.

Figure S3: ¹H NMR of 10 mM $[Co(PY5Me_2)(ACN)](PF_6)_3$ complex in deuterated CD₃CN. Peak at 5.5 ppm is residual dichloromethane from the synthesis.

Figure S4: Scan rate dependence of CV's for 5 mM of $[Co(PY5Me_2)(DMP-CN)](PF_6)_2$ measured with 0.2 M DMP-CN in acetonitrile with 0.1 M TBAPF₆.

Figure S5: Peak anodic current (green) and peak cathodic (violet) as a function of the square root of scan rate (v) for $[Co(PY5Me_2)(DMP-CN)](PF_6)_2$.

Figure S6: ¹H NMR for Evan's Method, of ferrocene proton signal (red) as a function of the concentration of $[Co(PY5Me_2)(DMP-CN)](PF_6)_2$ 5.0 mM (orange), 9.0 mM (green), 13.0 mM (blue), and 16.0 mM (purple). Measured in deuterated acetonitrile with 0.2 M DMP-CN.

Figure S7: ¹H NMR for Evan's Method, of ferrocene signal as a function of $[Co(PY5Me_2)(ACN)](PF_6)_2$ complex blue (0 mM), violet (5.1 mM), green (9.4 mM), orange (13.0 mM), and red (16.0 mM).

Figure S8 ATIR spectrum of the $[Co(PY5Me_2)(DMP-CN)](PF_6)_2$ complex (green) and of the $[Co(PY5Me_2)(DMP-CN)](PF_6)_3$ complex (purple).

The C=N stretching modes were analyzed by infrared spectroscopy using the attenuated total reflection (ATIR) configuration on crystals of each complex. Upon inspection of the IR spectrum for $[Co(PY5Me_2)(DMP-CN)](PF_6)_2$ complex, one signal is present at 2166 cm⁻¹ for the isocyanide stretch of the complex which is shifted from the signal of the free DMP-CN ligand (2118 cm⁻¹), (Figure S8 ATIR spectrum of the $[Co(PY5Me_2)(DMP-CN)](PF_6)_2$ complex (green) and of the $[Co(PY5Me_2)(DMP-CN)](PF_6)_3$ complex (purple).). The increase in C=N frequency is due to the antibonding character of the lone pair of the carbon being reduced by sigma donation to the Co(II) metal center which has a larger contribution than the weakening π backdonation. Upon oxidation,

the $[Co(PY5Me_2)(DMP-CN)](PF_6)_3$ complex has three visible signals in the region that is typical to cyanide functional groups. The signal at 2211 cm⁻¹ can be attributed to the cyanide stretching mode while the two higher wavenumber signals can be attributed to acetonitrile bound in the crystal lattice which agrees with the single crystal x-ray structure.¹ The increase in bond strength from Cobalt (II) to Cobalt (III) is rationalized by the reduced π backdonation into the π^* antibonding orbital increasing the bond order of the C=N bond of the Cobalt (III) complex.

Figure S9: UV-visible spectrum of $Co(PY5Me_2)(DMP-CN)(PF_6)_2$ (green) and of $Co(PY5Me_2)(DMP-CN)(PF_6)_3$ (purple). Spectra were collected in acetonitrile with 0.4 DMP-CN present. Background was corrected for 0.4 M DMP-CN absorbance.

Table S1: Fitting parameters from TA measurements from bi-exponential equation. Results are average and error of 6 devices of each electrolyte.

Electrolyte	ΔA_0	A_1	$k_1(10^{-3})$ (ns ⁻¹)	A_2	$k_2 (10^{-3}) (\text{ns}^{-1})$	\mathbb{R}^2
Inert	0.12 ± 0.02	0.35 ± 0.02	1.2 ± 2.1	0.45 ± 0.06	5.4 ± 3.5	0.89 ± 0.07
$[Co(bpy)_3]^{3+/2+}$	0.09 ± 0.03	0.35 ± 0.06	2.5 ± 5.1	0.45 ± 0.05	7.9 ± 4.7	0.90 ± 0.03
[Co(PY5Me ₂)(DMP-CN)] ^{+3/+2}	$\textbf{-0.04} \pm 0.02$	0.40 ± 0.09	2.7 ± 4.1	0.50 ± 0.08	11.9 ± 10.2	0.7 ± 0.1
[Co(PY5Me ₂)(ACN)] ^{3+/2+}	0.06 ± 0.02	0.42 ± 0.04	2.0 ± 2.5	0.43 ± 0.04	5.2 ± 3.9	0.93 ± 0.02

Figure S10: Example Nyquist plots of full DSSCs at 100 mW cm⁻² fitted to the equivalent circuit.

Figure S11: Equivalent circuit used to fit full dye-sensitized solar cells.

Figure S12.: Chemical capacitance as a function of potential applied at each light intensity. The potential is obtained by correcting the applied potential vs solution potential measured against Fc^+/Fc .

Figure S13: Plot of current density *vs.* applied voltage curves under varying illumination intensities for DSSCs containing the $[Co(PY5Me_2)(DMP-CN)(PF_6)_{3/2}]$ electrolyte.

Figure S14: Plot of current density *vs.* applied voltage curves under illumination for DSSCs containing $[Co(PY5Me_2)(DMP-CN)](PF_6)_{3/2}$ and $[Co(bpy)_3](PF_6)_{3/2}$ electrolytes with a 6.5 µm thick film of 30 nm TiO₂ nanoparticles. The electrolyte consisted of 0.15 M Co(II), 0.015 M Co(III), 0.1 M LiPF₆ and 0.2 M DMP-CN for the $[Co(PY5Me_2)(DMP-CN)](PF_6)_{3/2}$ electrolyte. All other device preparations were the same as that within the main text.

Table S2.: Device parameters extracted from 5 devices (average and standard deviation) shown in Figure S14.

Electrolyte	$V_{\rm OC}({ m V})$	$J_{\rm sc}$ (mA cm ⁻²)	FF	η
[Co(PY5Me ₂)(DMP-CN)](PF ₆) _{3/2}	0.58 ± 0.01	7.7 ± 0.2	0.54 ± 0.02	2.4 ± 0.2
$[Co(bpy)_3](PF_6)_{3/2}$	0.48 ± 0.01	9.2 ± 0.4	0.44 ± 0.04	1.9 ± 0.1

(1) Pace, E. L.; Noe, L. J. Infrared Spectra of Acetonitrile and Acetonitrile-D3. J. Chem. *Phys.* **1968**, *49* (12), 5317–5325.