Directly Embedded Ni$_3$S$_2$/Co$_9$S$_8$@S-Doped Carbon Nanofiber Networks as Free-standing Anode for Lithium-ion Batteries

Zizhou He, a Hui Guo, a Jed D LaCoste, a Ryan A Cook, a Blake Hussey, a Xu Zhang, c Daniel Dianchen Gang, c Ji Hao, d Liang Chen, e Peter Cooke, f Hui Yan, b Ling Fei * a

a. Department of Chemical Engineering, Institute for Materials Research and Innovations, University of Louisiana at Lafayette, Lafayette, LA 70504, United States E-mail: ling.feilouisiana.edu
b. Department of Chemistry, University of Louisiana at Lafayette, Lafayette, LA 70504, United States
c. Department of Civil Engineering, University of Louisiana at Lafayette, Lafayette, LA, 70504, United States
d. National Renewable Energy Laboratory, Materials Science Center, Golden, CO 80401, United States
e. New Jersey Institute to Technology, Newark, NJ 07102, United States
f. Core University Research Resources Laboratory, New Mexico State University, Las Cruces, NM 88003, United States
g. School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P.R. China
To further confirm the composition of the as-prepared samples, we performed a TGA analysis under air atmosphere. The process involved combustion of carbon, oxidation-reduction reaction of metal sulfides:

\[
\text{Metal sulfide + Carbon nanofibers + O}_2 \rightarrow \text{Metal oxide + CO}_2 + \text{SO}_2
\]

Where the metal sulfide composites were oxidized to NiO and Co$_3$O$_4$. Based on this formulation the weight percentages of Co$_9$S$_8$, Ni$_3$S$_2$/Co$_9$S$_8$, and Ni$_3$S$_2$ in the composites are calculated to be 50.7%, 41.5%, and 39.5%, respectively.

Figure S1. TGA analysis of all the samples under air atmosphere
Figure S2. (a) nitrogen N_2 adsorption-desorption isotherms (b) pore-size distribution of the electrodes
Figure S3. SEM image of Ni$_3$S$_2$/Co$_9$S$_8$@S-CNFs anode after 200 cycles at a current density of 1 A g$^{-1}$
Figure S4. The relationship plot of Z' versus $\omega^{-1/2}$ at low-frequency region.

The Li diffusion kinetics was analyzed via EIS by using the following equation:

$$D = \frac{R^2T^2}{2A^2n^2F^4C^2\sigma^2}$$ \hspace{1cm} \text{Equation S1}

Where R is the gas constant, T represents the temperature, A is the surface area of electrode, F is the Farady constant, n is the number of electrons per molecule attending the charge-discharge reaction, C is the concentration of lithium ion in the electrode, and σ is the slop of the line $Z' - \omega^{-1/2}$. Based on the equation, the lithium ions diffusion coefficient is inversely proportional to σ (shown in Figure S4).