Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Synthesis and electrochemical performance of Co_{1-x}Ni_xS QDs as electrode

material for high performance supercapacitor

Mingyan Chuai, Hongpeng Zhang, Yu Tong, Kewei Zhang and Mingzhe Zhang,*

*State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, People's Republic of China.

*Corrsponding Author: zhangmz@jlu.edu.cn;

Experiment section

Materials characterization

Fig. S1. The enlarged XRD patterns of CoS and Co_{1-x}Ni_xS (x=0.19, 0.33, 0.58, 0.79, 0.93) QDs at (002) plane.

The reactive	Co(COOCH ₃) ₂ .	Ni(COOCH ₃) ₂ .	PVP	deionized	Total
solutions of	4H ₂ O solution	4H ₂ O solution	solution	aqueous	volume
six samples					
CoS	100 ml	0 ml	1 ml	399 ml	500 ml
Co _{1-x} Ni _x S (x=0.19) 100 ml	10 ml	1 ml	389 ml	500 ml
Co _{1-x} Ni _x S (x=0.33) 100 ml	30 ml	1 ml	369 ml	500 ml
Co _{1-x} Ni _x S (x=0.58	3) 100 ml	50 ml	1 ml	349 ml	500 ml
Co _{1-x} Ni _x S (x=0.79) 100 ml	70 ml	1 ml	329 ml	500 ml
Co _{1-x} Ni _x S (x=0.93) 100 ml	90 ml	1 ml	309 ml	500 ml

Table S1. The volume of each solution in the six reactive solutions.

Fig. S2. Energy dispersive X-ray (EDX) spectra of CoS sample.

The EDS spectra only shows the S and Co elements, which indicates that the synthesized samples are pure phase.

Table S2. The composition of each elements of CoS sample.

Element	Line Type	Atomic Percentage
S	К	50.66
Со	К	49.34
Total		100

Fig. S3. Energy dispersive X-ray (EDX) spectra of $Co_{1-x}Ni_xS$ (x=0.19) sample.

Element	Line Type	Atomic Percentage	
S	К	49.34	
Со	К	41.03	
Ni	К	9.63	
Total		100	

Table S3. The composition of each elements of $Co_{1-x}Ni_xS$ (x=0.19) sample.

Fig. S4. Energy dispersive X-ray (EDX) spectra of $Co_{1-x}Ni_xS$ (x=0.33) sample.

Element	Line Type	Atomic Percentage
S	К	50.03
Со	К	33.48
Ni	К	16.49
Total		100

Fig. S5. Energy dispersive X-ray (EDX) spectra of $Co_{1-x}Ni_xS$ (x=0.79) sample

Table S5. The composition of each elements of $Co_{1-x}Ni_xS$ (x=0.79) sample.				
	Element	Line Type	Atomic Percentage	

Element	Line Type	Atomic Percentage
S	К	50.17
Со	К	10.46
Ni	К	39.37
Total		100

Fig. S6. Energy dispersive X-ray (EDX) spectra of $Co_{1-x}Ni_xS$ (x=0.93) sample

Table S6. The composition of each el	ements of $Co_{1-x}Ni_xS$ (x=0.93) sample.
--------------------------------------	--

Element	Line Type	Atomic Percentage	
S	К	50.02	
Со	К	3.50	
Ni	К	46.48	
Total		100	

Fig. S7. (a) low magnification and (b) high magnification TEM image of CoS QDs. (c) The HRTEM image record from CoS QDs.

Fig. S8. (a) CV curves of $Co_{1-x}Ni_xS$ (x=0.58) electrode material with the potential window from 0 to 0.8 V. (b) CV curves of $Co_{1-x}Ni_xS$ (x=0.58) electrode material with the potential window from 0 to 0.6 V. (c) CV curves of $Co_{1-x}Ni_xS$ (x=0.58) electrode material with the potential window from 0.2 to 0.8 V.

Fig. S9. CV curves of bare Ni foam with the potential window from 0 to 0.8 V.

Fig. S10. The models of (a) $\text{Co}_{16}\text{S}_{16}$, (b) $\text{Co}_{15}\text{Ni}_1\text{S}_{16}$ respectively.

The vectors a, b, and c represent the direction of the lattice constants. The green, purple and red ball represent the S, Co and Ni atoms, respectively. All models have been optimized by VASP.

Fig. S8. The band and DOS of $Co_{16}S_{16}$ model.

Materials	Current	Electrolyte	Specific	Reference
	density		capacitance	
Mo-doped CoS	0.5 A g ⁻¹	2 М КОН	781.0 F g ⁻¹	[1]
CoS	1 A g ⁻¹	1 M HCL	366.0 F g ⁻¹	[2]
CoS hierarchitectures	1 A g ⁻¹	6 M KOH	586.0 F g ⁻¹	[3]
CoS nanospheres	1 A g ⁻¹	3 M NaOH	632.0 F g ⁻¹	[4]
CoS	5 A g ⁻¹	3 M NaOH	932.0 F g ⁻¹	[5]
CoS/rGO	0.5 A g ⁻¹	6 М КОН	813.0 F g ⁻¹	[6]
Co _{1-x} Ni _x S (x=0.58)	5 A g ⁻¹	6 М КОН	1305.53 F g ⁻¹	This work

Table S7. Comparison of the specific capacitance of $Co_{1-x}Ni_xS$ electrode with some recently reported materials.

Reference

- 1. J. F. Li, D. D. Chen, Q. S. Wu, J. Energy. Storage., 2019, 23, 511-514.
- 2. [2] Z. Yang, Q. X. Ma, L. Han, K. Tao, *Inorg. Chem. Front.*, 2019, **6**, 2178-2184.
- 3. [3] F. L. Luo, J. Li, H. Y. Yuan, D. Xiao, *Electrochimica Acta.*, 2014, **123**, 183-189.
- 4. [4] Y. C. Zhao, Z. Shi, H. Y. Li, C. A. Wang, J. Mater. Chem. A., 2018, 6, 12782-12793.
- [5] Y. C. Zhao, Z. Shi, T. Q. Lin, L. M. Suo, C. Wang, J. Luo, Z. S. Ruan, C. A. Wang, J. Li, J. Power. Sources., 2019, 412, 321-330.
- 6. J. Zhu, W. T. Zhou, Y. Z. Zhou, X. N. Cheng, J. Yang, J. Electron. Mater., 2019, 48, 1531-1539.