Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2020

Supporting Information[†]

Mesoporous Carbon-Supported Manganese Tungstate Nanostructure for the Development of Zinc-Air Battery Powered Long Lifespan Asymmetric Supercapacitor

Sourav Mallick, Arpan Samanta and C. Retna Raj* Functional Materials and Electrochemistry Lab, Department of Chemistry, Indian Institute of

Technology, Kharagpur, India

E-mail: crraj@chem.iitkgp.ac.in

The mass to charge balance of the two electrodes of asymmetric supercapacitor device:

$$C_{m+}\Delta V_{+}m_{+}=C_{m-}\Delta V_{-}m_{-} \tag{1}$$

Where, C_{m+} and C_{m-} are the specific capacitances (F g⁻¹), ΔV_+ and ΔV_- are the potential windows (V) and m_+ and m_- are the mass loading of the positive and negative electrodes, respectively.¹

Calculation of specific capacitance (C_{sp}) , energy density (E), power density (P) and coulombic efficiency of the asymmetric device:

$$C_{sp} = \frac{I\Delta t}{A\Delta V} \ mFcm^{-2} \tag{2}$$

$$E = \frac{C\Delta V^2}{2} \, mWhcm^{-2} \tag{3}$$

$$P = \frac{E}{\Delta t} \ mW \ cm^{-2} \tag{4}$$

where C (F cm⁻²) is the specific capacitance, I (mA) represent the discharge current, A (cm⁻²) designates total area of the electrodes, ΔV (V) and Δt (s) are the cell voltage and total discharge time, respectively.¹

Coulombic efficiency (η) was calculated using the formula ¹:

$$\eta = \frac{\Delta t_d}{\Delta t_c} \times 100 \tag{5}$$

where, Δt_c and Δt_d are the time taken for completely charge and discharge of the device, respectively.¹

Koutecky–Levich (K-L) equation and Tafel analysis:

The polarization curves were obtained at different rotation and further analyzed according to Koutecky–Levich (K-L) equation²

$$\frac{1}{J} = \frac{1}{J_D} + \frac{1}{J_K} \tag{6}$$

$$\frac{1}{J} = \frac{1}{0.69 \, n \, F \, C_0 D^2 v^{-\frac{1}{6}} \omega^{\frac{1}{2}}} + \frac{1}{n F k C_0} \tag{7}$$

where, J_K is kinetic and J_D is the diffusion limited current density. ' ω ' is the angular velocity, 'F' is Faraday's constant, 'C₀' (0.00118 mM cm⁻³) is the concentration of dissolved oxygen, 'D' (1.00009 cm² s⁻¹) is the diffusion coefficient of oxygen, 'n' is the number of electrons transferred, 'v' (0.01 cm²s⁻¹) is the kinematic viscosity of solution and 'k' is the apparent electron transfer rate constant.

The kinetics of ORR was further studied by Tafel analysis, by using the following equation²

$$J_k = (J_{lim} \times J_{diff}) / (J_{lim} - J_{diff})$$
(8)

Calculation of n value and % HO₂:

The n value and % HO_2^- were obtained from the RRDE profile at 1600 rpm according to the standard procedures.²

$$n = 4NI_D / (NI_D + I_R) \tag{9}$$

$$\% HO_2 = 200I_R / (NI_D + I_R)$$
(10)

where, I_D and I_R are the disk and ring current respectively and N is the current collection efficiency of RRDE (0.37).

Fig. S1. (a) BET profile and (b) BJH pore-size distribution plot of cotton fabric (200 GSM) derived mesoporous carbon.

Fig. S2. XPS surface survey scan profile of MnWO₄/CC.

Fig. S3. FESEM images of MnWO₄/CC at low magnification.

Fig. S4. EDS analysis and atomic percentages of each elements of MnWO₄/CC.

Elements name	Atomic (%)
С	86.90
0	9.78
Mn	1.58
W	1.74
Total	100.00

Fig. S6. (a) Cyclic voltammetric profile of MnWO₄/C coated Ni foam at different scan rates. (b) Comparative cyclic voltammetric and (c) charge- discharge profiles of MnWO₄/C, MnWO₄ and C (200 GSM) coated Ni foam.

Fig. S7. (a) Cyclic voltammetric and (b) charge-discharge profiles of negative electrode material (carbon derived from 600 GSM cotton fabric) obtained with three-electrode system.

The mass to charge balance calcultion based on the performnce of MnWO₄/C and bare C (600 GSM):

 $m_{-}/m_{+} = (C_{m+}\Delta V_{+})/(C_{m-}\Delta V_{-}) = (410 \ge 0.6)/(98 \ge 1) = 2.51$

The bare 600 GSM cotton fabric derived CC was choosen for negative electrode, having thread

count ~3 times higher than 200 GSM cotton fabric (GSM= grams per square meter)

Fig. S8 Plot illustrating the (a) rate capability, (b) energy and power density (Ragone plot) of the asymmetric device.

Fig. S9 Digital photograph of glowing 29 Red LEDs of varying intensity at different time interval.

Fig. S10. Charge-discharge cycling performance of asymmetric device at the current density of 20 mA cm⁻² for 50,000 cycles. Selected region is given for clarity reason.

Fig. S11. (a) Plot of phase angle vs log (frequency) and (b) C'' vs. log (frequency) of the device before and after cycling.

Fig. S12. Post-cycling TEM image of MnWO₄/CC. Measurement was performed with the electrode material after 50,000 cycles.

Fig. S13. Post-cycling STEM mapping images of MnWO₄/CC.

Fig. S14. EDS analysis and atomic percentages of each elements of MnWO₄/CC after durability test.

Acquisition Parameter Instrument : JEM-2100F(HRP) Acc. Voltage : 200.0 kV Probe Current : 1.00000 nA PHA mode : T3 Real Time : 79.80 sec

Elements name	Atomic (%)
С	50.98
Ο	31.35
Mn	2.85
W	5.01
K	9.81
Total	100.00

Fig. S15. Electrochemical surface area (ECSA) of MnWO₄/C, MnWO₄ and mesoporous carbon.

Calculation of ECSA:^{3,4}

 $ECSA = C_s/(40 \ \mu F \ cm^{-2} \ per \ cm_{ECSA}^2)$

Mass specific ECSA = (ECSA/ catalyst loading)

Where, C_s = double layer capacitance (slop of the Δj vs. scan rate plot)

The specific capacitance for a flat surface is generally found to be in the range of 20-60 μ F cm⁻².

Fig. S16. (a) Polarization curves for ORR, (b) plot illustrating the ORR activity in terms of current density and (c) tafel plot for the as-synthesized carbon-free MnWO₄, mesoporous carbon (C), MnWO₄/C and 20% Pt/C. (d) Plot illustrating the durability as-synthesized carbon-free MnWO₄ and MnWO₄/C.

Fig. S17. (a) The polarization curve at varying rotation speed and (b) K-L plot at different potentials for MnWO₄/C.

Fig. S18. The polarization curve at different rotation and K-L plot at different potentials for $MnWO_4(a,b)$, mesoporous carbon (c,d) and 20% Pt/C (e,f).

Fig. S19. (a) The RRDE profile of MnWO₄/C. (b) Comparative n value and % HO_2^- of MnWO₄/C, MnWO₄ and mesoporous carbon (C).

Fig. S20. Charge-dishcarge cycling performance of reference catalyst 20% Pt/C+ IrO₂ based Zn-air battery.

Fig. S21. Discharge profile of ZAB at 50 mA cm⁻².

Fig. S22. Plot illustrating the charge-discharge cycling stability of meshed coin cell based ZAB.

Materials	Electrolyte & potential window	Three electrode performance	Two electrode performance	Durability	References
MnWO ₄	1 M KOH	219 F g ⁻¹ at 0.4 A g ⁻¹ (0 - 0.6 V vs. Hg/HgO)	-	increased after 3000 cycles	Mater. Chem. Phys. 2015 , 167, 22.
MnWO ₄ Nanorods (hydrothermal synthesis)	3 М КОН	256 F g ⁻¹ at 0.4 A g ⁻¹ (0 - 0.5 V vs. Ag/AgCl)	-	62% after 1200 cycles	ChemistrySele ct 2017 , 2, 5707.
MnWO ₄ nanorods (using CTAB)	1 M H ₂ SO ₄	16 F g ⁻¹ at 1.3 mA cm ⁻² (0 – 1.2 V vs. Ag/AgCl)	-	increased after 1000 cycles	J Electroceram 2012 , 28, 220.
MnWO ₄ (using DNA scaffold)	0.1 M Na ₂ SO ₄	$\begin{array}{c} 34 \ {\rm F \ g^{-1} \ at \ 0.5} \\ {\rm mA \ cm^{-2}} \\ (0-1 \ {\rm V \ vs.} \\ {\rm SCE}) \end{array}$	-	Not mentioned	<i>RSC Adv.</i> 2014 , 4, 38169
MnWO4/rGO (hydrothermal synthesis)	6 M KOH	261 F g ⁻¹ at 0.5 A g ⁻¹ (-0.35 – 0.55 V vs. Ag/AgCl)	(0 - 1.5 V) 101 F g ⁻¹ at 0.5 A g ⁻¹	85.1% after 6000 cycles	J. Alloys Compd 2016 , 666, 15.
MnWO ₄ microflower	0.1 M Na ₂ SO ₄	324 F g^{-1} at 1 mA cm ⁻² (0 - 1 vs. Ag/AgCl)	(0 - 1.8 V) 34 Wh kg ⁻¹ at 500 W kg ⁻¹	84% after 3000 cycles	Int. J. Hydrogen Energ. 2019, 44, 10838.
WO ₃ @MnWO ₄ core-shell	0.5 M H ₂ SO ₄	550.9 F g^{-1} at 2 A g^{-1} (-0.65 - 0 V vs. Ag/AgCl)	0 - 2 V 152.4 Wh kg ⁻¹ 3583.5 kW kg ⁻¹	92% after 10,000 cycles	J. of Colloid Interface Sci. 2018 , 531, 216.
MnWO4/CC	3 M KOH 0 – 1.9 V	410 F g ⁻¹ at 2 A g ⁻¹ (0 – 0.6 V vs.Hg/HgO)	0.140 mWh cm ⁻² at 0.37 mW cm ⁻² 281.33 mF cm ⁻² (93.77 F g ⁻¹) at 0.4 mA cm ⁻²	2% increase after 50,000 cycles	Our work

Table S1. Supercapacitive performance of MnWO4 based material in the literature.

Table S2. ECSA of the catalysts.

Catalyst	ECSA (cm ²)	Mass specific ECSA (m ² g ⁻¹)
MnWO ₄ /C	8.55	85.5
MnWO ₄	0.8	8.0
C-200	6.76	67.7

 Table S3. Onset and half-wave potential of the catalysts.

Catalysts	Onset (V vs. RHE)	E _{1/2} (V vs. RHE)
MnWO4/C	0.89	0.76
MnWO ₄	0.68	0.55
C-200	0.84	0.72
20% Pt/C	0.94	0.83

Catalyst	OCV (V)	Power	Stability	References
		(mW/cm ²)		
Mn ₃ O ₄ /N-CNT	Not given	133	50 h	<i>Batteries & Supercaps</i> 2019, <i>2</i> , 882–893
CoO/NG	Not given	135	40 h	ACS Sustainable Chem. DOI: 10.1021/acssuschemeng.9b0549
Co-NiO NFs	Not given	93	20 h	Appl. Catal. B Environ. 2019 , 250, 71–77
MnCo ₂ O ₄ @C	1.43 V	~40	70 h	<i>J. Power Sources</i> 2019 , <i>430</i> , 25-31
Mn-Co mixed	1.53	108	30h	<i>Electrochim. Acta</i> 2016 , <i>211</i> , 735.
oxide				
NiFeO@MnOx	Not given	81	100 cycle	ACS Appl. Mater. Interfaces 2017 , 9, 8121.
core-				
shell structures				
MnO ₂ /Co ₃ O ₄	Not given	36	7 h	Nanoscale 2013, 5, 4657.
MnWO ₄ /C	1.50 V	131	72 h (432 cycle)	Our work

 Table S4. ZAB
 performance of oxide-based material in the literature.

References

- 1. B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Kluwer Academic/Plenum Publisher, New York, 1999.
- 2. S. Mondal, C. R. Raj, J. Phys. Chem. C 2018, 122, 18468.
- J. Kibsgaard, C. Tsai, K. Chan, J. D. Benck, J. K. Nørskov, F. A. Pedersen, T. F Jaramillo, *Energy Environ. Sci.* 2015, 8, 3022.
- 4. A. Tiwari, V. Singh and T. C. Nagaiah, J. Mater. Chem. A, 2018, 6, 2681.