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Fig. S2. Expression abundance of all secreted proteins on day 20 and day 40. Unexpressed proteins are colored black.
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Fig. S3. The degradation ratio of lignin, cellulose and hemicellulose during fungal
treatment of bamboo samples. Chemical composition including lignin, cellulose and
hemicellulose composition was determined based on procedure of National Renewable
Energy Laboratory (NREL, Golden, CO) U'l. The degradation ratio of the composition

(%) was calculated as the formula:

content of day X (%) X solid recovery of day X(%)

degradation ratio of day X(%) = content of day 0 (%)
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Fig. S4. FA esterase enzymatic activities of 2538 on bamboo LCCs polymers

LCCs isolated from original bamboo was used as substrate to test FA esterase
enzymatic activities of extracted secretomes. 1 U of enzymatic activity was defined as
1 pmol of ferulic acid released from 1g LCCs per minute. With 13.6 umol ferulic acid
released in 6 h, 37.8 mU of FA esterase enzymatic activities was detected in fungal
secretome of the early stage. At the later stage, the FA esterase enzymatic activities in
fungal secretome was lower than early stage, in which only 5.2 pumol ferulic acid
released in 6 h.

The reaction mixture contained 2 ml fungal secretome extract (0.05 mol/L pH 7.0
citrate-phosphate buffer as control), 1g LCCs and 0.5 ml 250 mM sodium malonate,

pH 4.5. After 6 h at 25 °C, the ferulic acid of the supernatants were determined by HPLC



using standard calibration curves. The ferulic acid of secretome was also detected and
excluded in the calculation. Samples were subjected to HPLC analysis with C18 column
(4.6 x 250 mm) (Waters) under the condition of 1 ml/min a flow rate with methanol-10
mM phosphoric acid as the eluent at 40 °C. The vertical line on each point indicates the

standard deviation for three replicates (SD, n = 3).



Table S2. The isolation yields of all MWL and LCC fractions.

Fraction Fungal treated time (day) Isolation yield (%)
Untreated 15.42
20 13.79
MWL 2 30 13.31
40 12.64
50 9.52
Untreated 8.16
20 8.93
LCC? 30 7.75
40 7.41
50 6.32

2 % of Klason lignin

b o4 of extraction-free bamboo



Table S2. The assignments of *C-'H peaks in HSQC spectrum from the isolated

MWLs.

Label 0 C/dH (ppm) Assignments
PCA, 144.8/7.41 Cy-H, in p-coumarate (PCA) and ferulate (FA)
PCA,¢ 130.1/7.45 C,-H; and C¢-Hg in p-coumarate (PCA)
I, 128.4/6.44 Cq-H, in cinnamyl alcohol end-groups (I)
Ig 128.4/6.23 Cp-Hp in cinnamyl alcohol end-groups(I)
Hy 6 127.8/7.22 C,6-Hz 6 in p-hydroxyphenyl units (H)
Ig 126.3/6.76 Cp-Hp in cinnamyl aldehyde end-groups(J)
FAq 123.2/7.15 Cs-Hg in ferulate (FA)
G's 123.2/7.33 Cs-Hg in guaiacyl units (G)
G 119.0/6.78 Cs-Hg in guaiacyl units (G)
Gs 115.1/6.92 Cs-Hj; in etherified guaiacyl units (G)
PCA; 5 115.5/6.77 C;-Hj; and Cs-Hs in p-coumarate (PCA)
Gs 114.9/6.70 Cs-Hj; in guaiacyl units (G)
PCAg 113.5/6.27 Cp-Hp in p-coumarate (PCA) and ferulate (FA)
FA, 111.0/7.32 C,-H; in ferulate (FA)
G, 110.9/6.99 C,-H; in guaiacyl units (G)
S 106.3/7.32 C,6-H,61n oxidized S units (S ')
Sa6 103.8/6.69 C,-H, and C4-Hg in etherified syringyl units (S)
T6 103.9/7.34 C'6- H'2 6 1n tricin (T)
Te 98.9/6.23 C,6- Hy 6 in tricin (T)
Ts 94.2/6.60 Cs- Hg in tricin (T)
B, 86.8/5.43 C.-H,, in phenylcoumaran substructures(B)
Ag(S) 85.9/4.10 Cp-Hp in B-O-4'substructures linked (A) to a S unit
Dg 85.3/3.85 Cp-Hp in dibenzodioxocin substructures(D)
F,/ 84.6/4.75 C,-H,' in spirodienone substructures (F)
C, 84.8/4.65 Cy-H,, in B-B' resinol substructures (C)



Ag(G) 83.4/4.27 Cp-Hp in B-O-4'substructures (A) linked to a G unit

D, 83.3/4.81 C,-H,, in dibenzodioxocin substructures(D)

Ag(H) 82.9/4.48 Cp-Hp in B-O-4'substructures (A) linked to a H-unit

Aoxg 82.7/5.22 Cp-Hp in a-oxidized B-O-4' substructures(Aox)
F, 81.2/5.10 C,-H,, in spirodienone substructures (F)

A'3(G) 80.8/4.52 Cp-Hp in y-acylated B-O-4'substructures linked to a G-unit (A")
E, 79.5/5.59 C,-H, in a-O-4' substructures (E)

Ay(S) 71.8/4.83 Cy-H,, in B-O-4'substructures (A) linked to a S-unit

AL(G) 70.9/4.71 C,-H, in B-O-4' substructures (A) linked to a G-unit

C, 71.0/3.81 and 4.17 C,-H, in B-B' resinol substructures (C)
A, 63.5/3.83 and 4.30 C,-H, in y-acylated B-O-4' substructures(A’)

B, 62.6/3.67 C,-H, in phenylcoumaran substructures (B)

I, 61.3/4.08 C,-H, in cinnamyl alcohol end-groups (I)

Fg 59.5/2.75 Cp-Hp in spirodienone substructures (F)

A, 59.4/3.35-3.80 C,-H, in y-hydroxylated B-O-4'substructures (A)
—OMe 55.6/3.73 C-H in methoxyls

Cp 53.5/3.05 Cp-Hp in B-B’ resinol substructures (C)

Bg 53.1/3.43 Cp-Hp in phenylcoumaran substructures (B)




Table S4. The assignments of *C-'H peaks in HSQC spectrum from the isolated

LCCs

Label 6 C/ 0o H (ppm) Assignments
Xs 62.6/3.30 and 3.95 Cs-Hs in B-D-xylopyranoside
X, 72.6/3.2 C,-H; in B-D-xylopyranoside
X2, 73.2/4.64 C,-H; in 2-O-acetyl-B-D-xylopyranoside
X3 73.9/3.41 C;-Hj in B-D-xylopyranoside
X33 74.7/4.96 Cs-Hj3 in 3-O-acetyl-B-D-xylopyranoside
X4 75.4/3.68 C4-Hy in B-D-xylopyranoside
Uy 81.3/3.25 C4-Hy in 4-O-methyl-o-D-GlcUA
BE, 81.3/4.672 Cq-H, in benzyl ether LCC structures
aX1(R) 92.2/5.07 (1-4)-a-D-xylopyranoside (R)
BX1(R) 97.4/4.26 (1-4)-B-D-xylopyranoside (R)
X2 99.2/4.5 2-O-acetyl-B-D-xylopyranoside
PhGlc, 101.2/4.65 phenyl glycoside linkages
PhGlc; 101.45/4.89 phenyl glycoside linkages
X3, 101.5/4.27 3-O-acetyl-B-D-xylopyranoside
Xy /Gle, 103.0/4.16 B-D-xylopyranoside/B-D-glucopyranoside
GIcAE 99.1/4.68 esterified 4-O-methyl-a-D-glucuronic acid units
esterified FAg  116.5/6.33 Cp-Hp in esterified ferulate (FA)




Table S5. Sugar and Lignin Analysis of MWL and LCC Preparations.

Chemical Composition # Carbohydrate Content ?
Preparation (% of Relative Content) (% of Relative Molar Content)
Lignin® Carbohydrate Glc Xyl Ara Gal
. 96.4 3.6 847 102 2.9 22
MWL-20d 95.6 4.4 79.9 12.4 4.6 3.1
MWL-30d 98.2 1.8 83.5 9.4 4.2 2.9
MWL-40d 97.1 29 89.2 6.7 3 1.1
MWL-50d 96.7 33 80.5 11.9 5.6 2
u;igte ; 29.4 70.6 32.8 62.3 3.7 1.2
LCC-20d 26.4 73.6 27.3 68.4 2.9 1.4
LCC-30d 28.2 71.8 30.3 64.9 4.1 0.7
LCC-40d 25.7 74.3 36.1 59.7 2.5 1.7
LCC-50d 26.1 73.9 28.6 65.1 5 1.3

2 Relative to MWL or LCC sample (%);

b including acid-soluble lignin and Klason lignin;

¢ Gle, glucose; Xyl, xylose Ara, arabinose; Gal, galactose.

Chemical composition was determined based on reference [21,
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