Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2020

E-supplementary data 2

Fig. S1. The main isolation procedures of MWLs and LCCs from raw and treated bamboo.

Fig. S2. Expression abundance of all secreted proteins on day 20 and day 40. Unexpressed proteins are colored black.

Fig. S3. The degradation ratio of lignin, cellulose and hemicellulose during fungal treatment of bamboo samples. Chemical composition including lignin, cellulose and hemicellulose composition was determined based on procedure of National Renewable Energy Laboratory (NREL, Golden, CO) ^[1]. The degradation ratio of the composition (%) was calculated as the formula:

 $degradation \ ratio \ of \ day \ X(\%) = \frac{content \ of \ day \ X(\%) \times solid \ recovery \ of \ day \ X(\%)}{content \ of \ day \ 0 \ (\%)}$

Fig. S4. FA esterase enzymatic activities of 2538 on bamboo LCCs polymers

LCCs isolated from original bamboo was used as substrate to test FA esterase enzymatic activities of extracted secretomes. 1 U of enzymatic activity was defined as 1 μ mol of ferulic acid released from 1g LCCs per minute. With 13.6 μ mol ferulic acid released in 6 h, 37.8 mU of FA esterase enzymatic activities was detected in fungal secretome of the early stage. At the later stage, the FA esterase enzymatic activities in fungal secretome was lower than early stage, in which only 5.2 μ mol ferulic acid released in 6 h.

The reaction mixture contained 2 ml fungal secretome extract (0.05 mol/L pH 7.0 citrate-phosphate buffer as control), 1g LCCs and 0.5 ml 250 mM sodium malonate, pH 4.5. After 6 h at 25 °C, the ferulic acid of the supernatants were determined by HPLC

using standard calibration curves. The ferulic acid of secretome was also detected and excluded in the calculation. Samples were subjected to HPLC analysis with C18 column $(4.6 \times 250 \text{ mm})$ (Waters) under the condition of 1 ml/min a flow rate with methanol-10 mM phosphoric acid as the eluent at 40 °C. The vertical line on each point indicates the standard deviation for three replicates (SD, n = 3).

Fraction	Fungal treated time (day)	Isolation yield (%)		
	Untreated	15.42		
MWL ^a	20	13.79		
	30	13.31		
	40	12.64		
	50	9.52		
LCC b	Untreated	8.16		
	20	8.93		
	30	7.75		
	40	7.41		
	50	6.32		

Table S2. The isolation yields of all MWL and LCC fractions.

^a % of Klason lignin

^b % of extraction-free bamboo

Label	δ C / δ H (ppm)	Assignments	
PCA _α	144.8/7.41	C_{α} -H _{α} in p-coumarate (PCA) and ferulate (FA)	
PCA _{2,6}	130.1/7.45	C_2 - H_2 and C_6 - H_6 in p-coumarate (PCA)	
I_{α}	128.4/6.44	C_{α} -H _{α} in cinnamyl alcohol end-groups (I)	
I_{β}	128.4/6.23	C_{β} -H _{β} in cinnamyl alcohol end-groups(I)	
H _{2,6}	127.8/7.22	C _{2,6} -H _{2,6} in p-hydroxyphenyl units (H)	
J_{eta}	126.3/6.76	C_{β} -H _{β} in cinnamyl aldehyde end-groups(J)	
FA_6	123.2/7.15	C_6 -H ₆ in ferulate (FA)	
G_{6}^{\prime}	123.2/7.33	C_6 -H ₆ in guaiacyl units (G)	
G_6	119.0/6.78	C_6 -H ₆ in guaiacyl units (G)	
G ₅	115.1/6.92	C ₅ -H ₅ in etherified guaiacyl units (G)	
PCA _{3,5}	115.5/6.77	C_3 - H_3 and C_5 - H_5 in <i>p</i> -coumarate (PCA)	
G ₅	114.9/6.70	C ₅ -H ₅ in guaiacyl units (G)	
PCA_{β}	113.5/6.27	C_{β} -H _{β} in <i>p</i> -coumarate (PCA) and ferulate (FA)	
FA_2	111.0/7.32	C_2 - H_2 in ferulate (FA)	
G_2	110.9/6.99	C_2 - H_2 in guaiacyl units (G)	
S' _{2,6}	106.3/7.32	$C_{2,6}$ - $H_{2,6}$ in oxidized S units (S ')	
S _{2,6}	103.8/6.69	C_2 - H_2 and C_6 - H_6 in etherified syringyl units (S)	
T′ _{2,6}	103.9/7.34	$C'_{2,6}$ - $H'_{2,6}$ in tricin (T)	
T_6	98.9/6.23	$C_{2,6}$ - $H_{2,6}$ in tricin (T)	
T_8	94.2/6.60	C_8 - H_8 in tricin (T)	
B_{α}	86.8/5.43	C_{α} -H _{α} in phenylcoumaran substructures(B)	
$A_{\beta}(S)$	85.9/4.10	$C_{\beta}\text{-}H_{\beta}$ in $\beta\text{-}O\text{-}4'\text{substructures linked}\left(\textbf{A}\right)$ to a S unit	
D_{eta}	85.3/3.85	C_{β} -H _{β} in dibenzodioxocin substructures(D)	
F _a '	84.6/4.75	C_{α} '- H_{α} ' in spirodienone substructures (F)	
C_{α}	84.8/4.65	C_{α} -H _{α} in β - β' resinol substructures (C)	

Table S2. The assignments of ¹³C-¹H peaks in HSQC spectrum from the isolated MWLs.

$A_{\beta}(G)$	83.4/4.27	C_{β} -H _{β} in β -O-4'substructures (A) linked to a G unit
D_{α}	83.3/4.81	C_{α} -H _{α} in dibenzodioxocin substructures(D)
$A_{\beta}(H)$	82.9/4.48	C_{β} -H _{β} in β -O-4'substructures (A) linked to a H-unit
Aox_{β}	82.7/5.22	C_{β} -H _{β} in α -oxidized β -O-4' substructures(Aox)
F_{α}	81.2/5.10	C_{α} -H _{α} in spirodienone substructures (F)
$A'_{\beta}(G)$	80.8/4.52	$C_\beta\text{-}H_\beta$ in $\gamma\text{-acylated}$ $\beta\text{-}O\text{-}4'\text{substructures}$ linked to a G-unit (A')
E_{α}	79.5/5.59	C_{α} -H _{α} in α -O-4' substructures (E)
$A_{\alpha}(S)$	71.8/4.83	$C_{\alpha}\text{-}H_{\alpha}$ in $\beta\text{-}O\text{-}4'substructures} (\textbf{A})$ linked to a S-unit
$A_{\alpha}(G)$	70.9/4.71	$C_{\alpha}\text{-}H_{\alpha}$ in $\beta\text{-}O\text{-}4'$ substructures (A) linked to a G-unit
C_{γ}	71.0/3.81 and 4.17	C_{γ} - H_{γ} in β - β' resinol substructures (C)
A^{\prime}_{γ}	63.5/3.83 and 4.30	C_{γ} -H _{γ} in γ -acylated β -O-4' substructures(A')
\mathbf{B}_{γ}	62.6/3.67	C_{γ} -H _{γ} in phenylcoumaran substructures (B)
I_{γ}	61.3/4.08	C_{γ} -H _{γ} in cinnamyl alcohol end-groups (I)
F_{β}	59.5/2.75	C_{β} -H _{β} in spirodienone substructures (F)
A_{γ}	59.4/3.35 - 3.80	C_{γ} -H _{γ} in γ -hydroxylated β -O-4'substructures (A)
-OMe	55.6/3.73	C-H in methoxyls
C_{β}	53.5/3.05	C_{β} - H_{β} in β - β' resinol substructures (C)
\mathbf{B}_{β}	53.1/3.43	C_{β} -H _{β} in phenylcoumaran substructures (B)

Label	δ C / δ H (ppm)	Assignments	
X_5	62.6/3.30 and 3.95	C_5 - H_5 in β -D-xylopyranoside	
X_2	72.6/3.2	C_2 -H ₂ in β -D-xylopyranoside	
X2 ₂	73.2/4.64	C_2 -H ₂ in 2-O-acetyl- β -D-xylopyranoside	
X_3	73.9/3.41	C_3 - H_3 in β -D-xylopyranoside	
X3 ₃	74.7/4.96	C_3 -H ₃ in 3-O-acetyl- β -D-xylopyranoside	
X_4	75.4/3.68	C_4 -H ₄ in β -D-xylopyranoside	
U_4	81.3/3.25	C_4 -H ₄ in 4-O-methyl- α -D-GlcUA	
BE_{α}	81.3/4.672	C_{α} -H _{α} in benzyl ether LCC structures	
αX1(R)	92.2/5.07	(1-4)-α-D-xylopyranoside (R)	
$\beta X1(R)$	97.4/4.26	(1-4)-β-D-xylopyranoside (R)	
X2 ₁	99.2/4.5	2-O-acetyl-β-D-xylopyranoside	
PhGlc ₂	101.2/4.65	phenyl glycoside linkages	
PhGlc ₃	101.45/4.89	phenyl glycoside linkages	
X3 ₁	101.5/4.27	3-O-acetyl-β-D-xylopyranoside	
X_1 /Glc ₁	103.0/4.16	β -D-xylopyranoside/ β -D-glucopyranoside	
GlcAE	99.1/4.68	esterified 4-O-methyl-α-D-glucuronic acid units	
esterified FA_{β}	116.5/6.33	C_{β} -H _{β} in esterified ferulate (FA)	

Table S4. The assignments of ¹³C-¹H peaks in HSQC spectrum from the isolated LCCs

Preparation	Chemical (Chemical Composition ^a		Carbohydrate Content ^b			
	Lignin ^b	Carbohydrate	Glc	Xyl	Ara	Gal	
MWL- untreated	96.4	3.6	84.7	10.2	2.9	2.2	
MWL-20d	95.6	4.4	79.9	12.4	4.6	3.1	
MWL-30d	98.2	1.8	83.5	9.4	4.2	2.9	
MWL-40d	97.1	2.9	89.2	6.7	3	1.1	
MWL-50d	96.7	3.3	80.5	11.9	5.6	2	
LCC- untreated	29.4	70.6	32.8	62.3	3.7	1.2	
LCC-20d	26.4	73.6	27.3	68.4	2.9	1.4	
LCC-30d	28.2	71.8	30.3	64.9	4.1	0.7	
LCC-40d	25.7	74.3	36.1	59.7	2.5	1.7	
LCC-50d	26.1	73.9	28.6	65.1	5	1.3	

Table S5. Sugar and Lignin Analysis of MWL and LCC Preparations.

^a Relative to MWL or LCC sample (%);

^b including acid-soluble lignin and Klason lignin;

^c Glc, glucose; Xyl, xylose Ara, arabinose; Gal, galactose.

Chemical composition was determined based on reference ^[2].

Reference

Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D.
Determination of structural carbohydrates and lignin in biomass. *Lab. Anal. Proced.* 2008.

2. Yue P-P, Hu Y-J, Fu G-Q, Sun C-X, Li M-F, Peng F, Sun R-C: Structural Differences between the Lignin-Carbohydrate Complexes (LCCs) from 2- and 24-Month-Old Bamboo (*Neosinocalamus affinis*). *Int. J. Mol. Sci.* vol. 19; 2017.