Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Insight into Sulfur Rich Selenium Sulfide/Pyrolyzed Polyacrylonitrile Cathodes for Li-S Batteries

Wei Zhang^a, Shuping Li^a, Lihui Wang^{a, b}, Xumin Wang^{a, b}, Jia Xie^{a*}

^aState Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.

^bState Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China

*Corresponding Author: Email: xiejia@hust.edu.cn

						S Cap.	Se Cap.	Se _x S _{1-x} Cap.	Se _x S _{1-x} Cap.
Materials	С	Ν	S	Se	Se _x S _{1-x}	(based on	(based on	(based on	(based on
	(wt%)	(wt%)	(wt%)	(wt%)	(wt%)	composites)	composites)	composites)	Se _x S _{1-x})
						(mAh g ⁻¹)	(mAh g ⁻¹)	(mAh g ⁻¹)	(mAh g ⁻¹)
Se _{0.35} S _{0.65} @pPAN-350°C	24.73	9.01	27.90	38.04	65.94	467	258	725	1099
Se _{0.38} S _{0.62} @pPAN-450°C	32.67	12.11	21.56	33.23	54.79	361	225	586	1071
Se _{0.44} S _{0.56} @pPAN-550°C	37.04	13.95	16.48	31.90	48.38	276	216	492	1018
Se _{0.48} S _{0.52} @pPAN-650°C	42.36	15.44	12.48	28.99	41.47	209	197	406	978

Table S1. Elemental analysis results of the $Se_xS_{1-x}@pPAN$ composites.

Figure S1. Selected area electron diffraction pattern of the Se_{0.38}S_{0.62}@pPAN-450 $^{\circ}$ C.

Figure S2. FT-IR spectra of the PAN and Se_{0.38}S_{0.62}@pPAN-450 °C.

Materials	Se _{0.35} S _{0.65}	Se _{0.38} S _{0.62} @	Se _{0.44} S _{0.56} @	Se _{0.48} S _{0.52} @	
	@pPAN-350°C	pPAN-450°C	pPAN-550°C	pPAN-650°C	
I _G /I _D	0.34	0.46	0.51	0.59	

Table S2. The ratio of I_G/I_D in the Raman spectra for the Se_xS_{1-x}@pPAN composites.

Figure S3. XPS spectra of Se_xS_{1-x}@pPAN composites. C 1s for Se_xS_{1-x}@pPAN.

Figure S4. XPS spectra of SeS₂, S 2p and Se 3p

Figure S5. Cyclic voltammograms of the $Se_{0.38}S_{0.62}$ @pPAN-450 °C electrode at a scan rate of 0.1 mV/s over a potential window of 1.0-3.0 V (vs. Li⁺/Li) in carbonate electrolyte.

Figure S6. The discharge-charge profiles of the $Se_{0.38}S_{0.62}$ @pPAN-450 °C electrode at various current densities from 1.0 to 3.0 V (vs. Li⁺/Li) in carbonate electrolyte.

Figure S7. The active material utilization of $Se_xS_{1-x}@pPAN$ electrodes at various current density in carbonate electrolyte.

Figure S8. Cycling performances of the $Se_xS_{1-x}@pPAN$ electrodes at 1 A g⁻¹ in ether electrolyte.

Figure S9. CV curves and peak currents versus square root of scan rates of $Se_xS_{1-x}@pPAN$ electrodes in carbonate electrolyte. (a), (c) and (e) are for $Se_{0.35}S_{0.65}@pPAN-350$ °C; and (b), (d) and (f) are for $Se_{0.38}S_{0.62}@pPAN-450$ °C.

Figure S10. CV curves and peak currents versus square root of scan rates of $SeS_2@pPAN$ electrodes in carbonate electrolyte. (a), (c) and (e) are for $Se_{0.44}S_{0.56}@pPAN-550$ °C; and (b), (d) and (f) are for $Se_{0.48}S_{0.52}@pPAN-650$ °C.

Material	Electrolyte	Current Density (A g ⁻¹)	Cycle number	Capacity retention (mAh g ⁻¹)	Ref.	
	Carbonate	0.2	200	857.4	This	
Se _x S _{1-x} /pPAN	Ether	0.4	200	806.1	work	
	Ether	1	500	574.5	WOIK	
SeS _x /cPAN	Carbonate	0.6	1200	780	1	
pPAN/SeS ₂	Carbonate	4	2000	633	2	
S _{0.87} Se _{0.13} /CPAN	Carbonate	0.3	200	989	3	
Se _x S _y /mesoporous carbon microsphere	Ether	0.5C	100	796.4	4	
SeS ₂ /double-layered hollow carbon sphere	Carbonate	1C	900	610	5	
S-rich S _{1-x} Se _x /C	Carbonate	1	500	910	6	
Se ₂ S ₅ confined in micro/mesoporous carbon	Ether	0.5C	100	430.2	7	
Se _n S _{8-n} Molecules Confined in Nitrogen-Doped Mesoporous Carbons	Ether	0.25	200	780	8	
S22.2Se/Ketjenblack	HFE-based	1C	250	660	9	
NiCo ₂ S ₄ @NC–SeS ₂	Ether	1C	800	580	10	
CMK-3/SeS2@PDA	Ether	2	500	350	11	
CoS2@LRC/SeS2	Ether	0.5	400	470	12	
S _{0.6} Se _{0.4} @CNFs	Carbonate	1	1000	346	13	
Co-N-C/SeS ₂	Ether	0.2C	200	970.2	14	
HMC@TiN/SeS ₂	Ether	0.2C	200	690	15	
S/Se@CB⊂NNH	Ether	0.2	500	915	16	

Table S3. Comparison of the results in this work with that of some previously reported cycling

 performance of S/Se cathodes for Li-S batteries.

Reference:

- C. Luo, Y. J. Zhu, Y. Wen, J. J. Wang, C. S. Wang, Carbonized Polyacrylonitrile-Stabilized SeS_x Cathodes for Long Cycle Life and High Power Density Lithium Ion Batteries, Adv. Funct. Mater. 24 (26) (2014) 4082-4089.
- [2] Z. Li, J. T. Zhang, Y. Lu, X. W. Lou, A pyrolyzed polyacrylonitrile/selenium disulfide composite cathode with remarkable lithium and sodium storage performances, Sci. Adv. 4 (6) (2018) 1687.
- [3] T. C. Zhu, Y. Pang, Y. G. Wang, C. X. Wang, Y. Y. Xia, S_{0.87}Se_{0.13}/CPAN composites as high capacity and stable cycling performance cathode for lithium sulfur battery, Electrochimica Acta 281 (2018) 789-795.
- [4] Y. J. Wei, Y. Q. Tao, Z. K. Kong, L. Liu, J. T. Wang, W. N. Qiao, L. C. Ling, D. H. Long, Unique electrochemical behavior of heterocyclic selenium–sulfur cathode materials in ether-based electrolytes for rechargeable lithium batteries, Energy Storage Materials 5 (2016) 171-179.
- [5] H. W. Zhang, L. Zhou, X. D. Huang, H. Song, C. Z. Yu, Encapsulation of selenium sulfide in double-layered hollow carbon spheres as advanced electrode material for lithium storage, Nano Research 9(12) (2016) 3725-3734.
- [6] X. N. Li, J. W. Liang, K. L. Zhang, Z. G. Hou, W. Q. Zhang, Y. C. Zhu, Y. T. Qian, Amorphous S-rich S_{1-x}Se_x/C (x ≤ 0.1) composites promise better lithium-sulfur batteries in a carbonate-based electrolyte, Energy Environ. Sci. 8(11) (2015) 3181-3186.

- [7] G. L. Xu, T. Y. Ma, C. J. Sun, C. Lou, L. Cheng, Z. H. Chen, K. Amine, et al. Insight into the capacity fading mechanism of amorphous Se₂S₅ confined in micro/mesoporous carbon matrix in ether-based electrolytes, Nano letters 16(4) (2016) 2663-2673.
- [8] F. G. Sun, H. Y. Cheng, J. Z. Chen, N. Zheng, Y. S. Li, J. L. Shi, Heteroatomic Se n S_{8-n} Molecules Confined in Nitrogen-Doped Mesoporous Carbons as Reversible Cathode Materials for High-Performance Lithium Batteries, ACS Nano 10(9) (2016) 8289-8298.
- [9] G. L. Xu, H. Sun, C. Luo, L. Estevez, M. Hao, et al. Solid-State Lithium/Selenium-Sulfur Chemistry Enabled via a Robust Solid-Electrolyte Interphase, Adv. Energy Mater. 9(2) (2019) 1802235.
- [10] B. S. Guo, T. T. Yang, W. Y. Du, Q. R. Ma, L. Z. Zhang, S. J. Bao, X. Y. Li, Y. M. Chen, M. W. Xu, Double-walled N-doped carbon@NiCo₂S₄ hollow capsules as SeS₂ hosts for advanced Li-SeS₂ batteries, J. Mater. Chem. A 7(19) (2019) 12276-12282.
- [11] Z. Li, J. T. Zhang, H. B. Wu, X. W. Lou, An improved Li-SeS₂ battery with high energy density and long cycle life, Adv. Energy Mater. 7(15) (2017) 1700281.
- [12] J. T. Zhang, Z. Li, X. W. Lou, A Freestanding Selenium Disulfide Cathode Based on Cobalt Disulfide-Decorated Multichannel Carbon Fibers with Enhanced Lithium Storage Performance, Angew. Chem. Int. Ed. 56(45) (2017) 14107-14112.

- [13] Y. Yao, L. C. Zeng, S. H. Hu, Y. Jiang, B. B. Yuan, Y. Yu, Binding S_{0.6}Se_{0.4} in
 1D Carbon Nanofiber with C-S Bonding for High-Performance Flexible Li-S
 Batteries and Na-S Batteries, Small 13(19) (2017) 1603513.
- [14] J. R. He, W. Q. Lv, Y. F. Chen, J. Xiong, K. C. Wen, C. Xu, W. L. Zhang, Y. R.
 Li, W. Qin, W. D. He, Direct impregnation of SeS₂ into a MOF-derived 3D nanoporous Co-N-C architecture towards superior rechargeable lithium batteries,
 J. Mater. Chem. A 6(22) (2018) 10466-10473.
- [15] Z. Li, J. T. Zhang, B. Y. Guan, X. W. Lou, Mesoporous Carbon@titanium nitride hollow spheres as an efficient SeS₂ host for advanced Li-SeS₂ batteries, Angew. Chem. Int. Ed. 56(50) (2017) 16003-16007.
- [16] T. Meng, Y. N. Liu, L. P. Li, J. H. Zhu, J. C. Gao, H. Zhang, L. Ma, C. M. Li, J. Jiang, Smart Merit Combination of Sulfur, Selenium and Electrode Engineering to Build Better Sustainable Li-Storage Batteries, ACS Sustainable Chem. Eng. 7(1) (2018) 802-809.