Supporting Information

Trimetallic conductivitive metal-organic frameworks as precatalysts for the oxygen evolution reaction with enhanced activity

Xiaofei Shi[#], Rui Hua[#], Yulong Xu, Tong Liu, and Guang Lu^{*}

Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, PR China

Corresponding Author

*glu@suda.edu.cn

Figure S1. FT-IR spectra of $FeCo_{0.6}Ni_{0.4}$ -CAT, $Co_{0.6}Ni_{0.4}$ -CAT, Co-CAT, and Ni-CAT.

Figure S2. SEM images of a) Co-CAT, b) FeCo-CAT, c) Ni-CAT, d) FeNi-CAT, e) Co_{0.8}Ni_{0.2}-CAT,

f) FeCo_{0.8}Ni_{0.2}-CAT, g) Co_{0.4}Ni_{0.6}-CAT, and h) FeCo_{0.4}Ni_{0.6}-CAT, respectively.

Sample	Atom contents (wt %)			Atom ratios in the total atom			
				contents of Co and Ni			
	Со	Ni	Fe	Со	Ni	Fe/(Co+Ni)	
FeCo-CAT	17.48	_	5.37	1.0	0	0.31	
FeCo _{0.8} Ni _{0.2} -CAT	13.65	3.70	5.45	0.79	0.21	0.31	
FeCo _{0.6} Ni _{0.4} -CAT	10.15	7.11	5.49	0.59	0.41	0.32	
FeCo _{0.4} Ni _{0.6} -CAT	7.18	9.97	5.46	0.42	0.42 0.58		
FeNi-CAT	_	17.93	5.42	0	1.0	0.30	

Table S1. ICP analysis of $FeCo_xNi_{1-x}$ -CATs obtained in 1.0 mM $Fe(OAc)_2$ methanol solition at 25 °C.

Table S2. ICP analysis of $FeCo_{0.6}Ni_{0.4}$ -CATs obtained in different concentrations of $Fe(OAc)_2$ methanolic solution at 25 °C.

Concentration	Atom	contents ((wt %)	Atom ratios in the total atom			
of Fe(OAc) ₂	contents of Co and Ni					and Ni	
(mmol)	Co	Ni	Fe	Со	Ni	Fe/(Co+Ni)	
0.25	12.76	8.61	1.27	0.60	0.40	0.06	
0.5	11.54	8.07	2.94	0.59	0.41	0.15	
1.0	10.15	7.11	5.49	0.59	0.41	0.32	
2.0	9.01	6.42	7.52	0.58	0.42	0.49	

Figure S3. Full XPS spectrum of $FeCo_{0.6}Ni_{0.4}$ -CAT.

Figure S4. High resolution XPS spectra of O 1s of FeNi-CAT and FeCo-CAT.

Figure S5. LSV curves of Co_xNi_{1-x}-CATs (x= 1.0, 0.8, 0.6, 0.4, 0).

Figure S6. LSV curves of a) FeNi-CAT and Ni-CAT, and b) FeCo-CAT and Co-CAT.

 $\textbf{Figure S7. LSV} \text{ curves of FeCo}_{0.8} \text{Ni}_{0.2}\text{-}\text{CAT}, \text{FeCo}_{0.6} \text{Ni}_{0.4}\text{-}\text{CAT}, \text{ and FeCo}_{0.4} \text{Ni}_{0.6}\text{-}\text{CAT}.$

Figure S8. LSV curves of FeCo_{0.6}Ni_{0.4}-CAT obtained via cation-exchange in 0.025, 0.05, 0.1, 0.2

mM Fe(OAc)₂ solutions, respectively.

Figure S9. The early three CV cycles measured in the potential range of 0.924~1.624 V (vs. RHE) with a scan rate of 10 mV s⁻¹ for FeCo_{0.6}Ni_{0.4}-CAT during activation process.

Figure S10. Full XPS spectrum of FeCo_{0.6}Ni_{0.4}-CAT after 1000 cycles of CV scans.

Figure 11. High resolution XPS spectra of a) Fe 2p and b) O 1s of $FeCo_{0.6}Ni_{0.4}$ -CAT after 1000

cycles of CV scans.

Figure S12. CV curves measured in a potential range of 0.924~0.974 V (vs. RHE) with the scan rates of 20, 30, 40, 50, and 60 mV s⁻¹ for a) Ni-CAT, b) Co-CAT, c) $Co_{0.6}Ni_{0.4}$ -CAT, and d) FeCo_{0.6}Ni_{0.4}-CAT, respectively.

Figure S13. Linear plot of ΔJ ((Ja - Jc)/2 at 0.95 V vs. RHE) of CVs measured at different scan rates in a non-Faradaic region against scan rate for Ni-CAT, Co-CAT, Co_{0.6}Ni_{0.4}-CAT, and FeCo_{0.6}Ni_{0.4}-CAT.

CAT, b) FeNi-CAT, c) $Co_{0.6}Ni_{0.4}$ -CAT, d) FeCo-CAT, and f) Co-CAT. Inset: equivalent circuit models.

Sample	R _s	Errors	R_i	Errors	R _{ct}	Errors	R _p	Errors
	(Ω)	of $R_{\rm s}$	(Ω)	of $R_{\rm i}$	(Ω)	of R _{ct}	(Ω)	of R _p
		(%)		(%)		(%)		(%)
FeCo _{0.6} Ni _{0.4} -CAT	2.6	0.9	11.1	0.3	3.2	1.3		
FeNi-CAT	3.1	2.5	12.4	1.5	30.6	0.7		
Co _{0.6} Ni _{0.4} -CAT	1.9	8.4	13.7	1.74	51.1	1.6		
Ni-CAT	2.6	4.0	8.9	4.0	81.9	1.7	49.7	1.5
FeCo-CAT	2.8	1.7	13.4	0.5	9.6	0.6		
Co-CAT	2.3	4.5	16.9	1.0	149.1	0.7		

Table S3. Different fit resistances and their errors corresponding to the equivalent circuit for FeCo_{0.6}Ni_{0.4}-CAT, FeNi-CAT, Co_{0.6}Ni_{0.4}-CAT, Ni-CAT, FeCo-CAT, and Co-CAT.

Figure S15. CV curves measured in the potential range of 0.924~1.426 V (vs. RHE) with a scan rate of 10 mV s⁻¹ for $Co_{0.6}Ni_{0.4}$ -CAT, Ni-CAT, and Co-CAT.

Figure S16. CV curves measured in the potential range of 0.924~1.426 V (vs. RHE) with a scan

rate of 10 mV s⁻¹ for Co-CAT and FeCo-CAT.