Electronic Supplementary Material (ESI) for Sustainable Energy & Fuels. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Strain Engineering: an efficient strategy to enhance the catalytic activity of

SACs on waved graphene for e-NRR

Di Liu^a, Haoqiang Ai^b, Wan Tong Lou^c, Feifei Li^a, Kin Ho Lo^b, Shuangpeng Wang^{a,d*},

and Hui Pan^{a,d*}

^a Institute of Applied Physics and Materials Engineering, University of Macau, Macao

SAR

^b Department of Electromechanical Engineering, Faculty of Science and Technology,

University of Macau, Macao SAR

^c Department of Physics, University of Oxford, Oxford, UK

^d Department of Physics and Chemistry, Faculty of Science and Technology,

University of Macau, Macao SAR

* Corresponding authors.

E-mail add.: Shuangpeng Wang (spwang@um.edu.mo); Hui Pan (huipan@um.edu.mo), Tel: (853) 88224427, Fax: (853) 88222454.

Figure S1.Top view of flat graphene (a) and side views (b) of waved-graphene with

different curvatures.

Figure S2. There are three stable adsorption configurations, which are named as aadsorption (side-on) (a), b-adsorption (side-on) (b) and c-adsorption (end-on) (c).

Figure S3. The adsorption energies of different adsorption configurations of SACs-wG.

Table S1. Adsorption energy and adsorption length of N_2 adsorbed SAC-Cu-wG and

SAC-Pt-wG.

Curvature (%)	Adsorption energy (meV)		Adsorption length (Å)		
	SAC-Cu-wG	SAC-Pt-wG	SAC-Cu-wG	SAC-Pt-wG	
0	-80	-89	3.07	3.69	
10	-63	-59	3.35	3.48	
20	-60	-60	3.04	3.71	
30	-63	-66	3.23	3.76	
40	-52	-55	3.14	3.44	
50	-54	-60	3.09	3.38	

Figure S4. Free energy diagrams for the e-NRR progresses on SAC-V-wG at U= 0 and

U= 0.87 V

Figure S5. Free energy diagrams for the e-NRR progresses on SAC-Cr-wG at U= 0

and U= 1.14V

Figure S6. Free energy diagrams for the e-NRR progresses on SAC-Mn-wG at U= 0

and U= 0.70 V

Figure S7. Free energy diagrams for the e-NRR progresses on SAC-Fe-wG at U=0

and U= 1.50 V

Figure S8. Free energy diagrams for the e-NRR progresses on SAC-Co-wG at U= 0

and U= 1.80 V

Figure S9. Free energy diagrams for the e-NRR progresses on SAC-Ni-wG at U=0

and U= 2.11 V

Curvature (%)	SAC-V-wG	SAC-Cr-wG	SAC-Mn-wG	SAC-Fe-wG	SAC-Co-wG	SAC-Ni-wG
0	0.63	0.30	0.70	1.50	1.03	
10	0.78	0.37	0.57	1.39	1.58	
20	0.58	0.45	0.60	1.26	1.80	
30	0.63	0.49	0.62	1.16	1.34	
40	0.87	0.91	0.66	1.01	1.11	2.11
50	0.85	1.14	0.66	1.24	1.28	1.82

Table S2. $\Delta G_{RDS}(eV)$ of SACs-wG

Fig S10. The d-band centers and N2 adsorption energies of SAC-V-wG at different

curvatures

Fig S11. The d-band centers and N2 adsorption energies of SAC-Cr-wG at different

curvatures

Fig S12. The d-band centers and N2 adsorption energies of SAC-Mn-wG at different

curvatures