Supporting Information

Sustainable production of nano α -Fe₂O₃/N-doped biochar hybrid nanosheets for supercapacitors

Panyu Li,^a Hongyang Xie,^a Xuqian Wang,^a Yi Xie,^a Yabo Wang^a and Yongkui Zhang^{*a} ^aDepartment of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu, Sichuan 610065, P. R. China

*Corresponding author:

Yongkui Zhang:_zhangyongkui@scu.edu.cn

Address (all the authors): Sichuan University, No. 24 South Section 1, Yihuan Road, Chengdu

610065, P. R. China

Tel.: +86-28-85405221; Fax: +86-28-85405221

Number of pages:9; Number of figures: 5; Number of tables: 2

Contents:

1. Fig. S1 FESEM images of NBCS-Fe-Ar.

2. Fig. S2 Cycling stability of NBCS-Fe-Air and NaK-Fe at 5 A g⁻¹ in the three-electrode system.
 3. Fig. S3 Electrochemical performance of NBCS-Fe-Air in a symmetrical two-electrode system.
 (a) CV curves at different scan rates, (b) GCD curves at different current densities, (c) specific capacitance of the samples as a function of current density and (d) Nyquist plots of NBCS-Fe-Air/NBCS-Fe-Air symmetrical supercapacitor.

4. **Fig. S4** Electrochemical performance of FMO in a three-electrode system. (a) CV curves at different scan rates, (b) GCD curves at different current densities, (c) specific capacitance of the samples as a function of current density and (d) Nyquist plots.

5. **Fig. S5** CV curves of the NBCS-Fe-Air//FMO asymmetric supercapacitor collected in various potential windows at 30 mV s⁻¹.

6. Table S1 Chemical compositions of samples.

7. **Table S2** Comparison of the specific capacitance of some reported iron oxide- or carbon-based materials.

Fig. S1 FESEM images of NBCS-Fe-Ar.

Fig. S2 Cycling stability of NBCS-Fe-Air and NaK-Fe at 5 A g⁻¹ in the three-electrode system.

Fig. S3 Electrochemical performance of NBCS-Fe-Air in a symmetrical two-electrode system. (a) CV curves at different scan rates, (b) GCD curves at different current densities, (c) specific capacitance of the samples as a function of current density and (d) Nyquist plots of NBCS-Fe-Air/NBCS-Fe-Air symmetrical supercapacitor.

Fig. S4 Electrochemical performance of FMO in a three-electrode system. (a) CV curves at different scan rates, (b) GCD curves at different current densities, (c) specific capacitance of the samples as a function of current density and (d) Nyquist plots.

Fig. S5 CV curves of the NBCS-Fe-Air//FMO asymmetric supercapacitor collected in various potential windows at 30 mV s⁻¹.

	Atomic percentage (%)		- Assignment	
	NBCS-Fe-Air	NBCS-Fe-Ar	Assignment	
C 1s	45.66	51.78	С=С/С-С/С-Н	
	25.17	23.81	C-OH/C-O-C/C-N	
	29.17	24.41	С=О	
O 1s	12.66	10.64	O-Fe	
	27.73	25.84	C-O-Fe	
	27.16	27.40	С=О	
	19.24	17.79	С-ОН/С-О-С	
	13.21	18.33	СООН	
N 1s	30.24	37.62	Pyridinic-N	
	40.98	34.97	Pyrrolic-N	
	17.61	17.27	Quaternary-N	
	11.17	10.14	Pyridine-N-oxides	

Table S1 Chemical compositions of samples.

Material	Electrolyte	Specific capacitance	Reference
		(F g ⁻¹)	
FeoO/C	1 M N2-SO	136.2 (1 A g ⁻¹)	1
rc ₃ 0 ₄ /C	1 W1 Wa2304	97.2 (2 A g ⁻¹)	
α-Fe ₂ O ₃ /rGO	1 M Na ₂ SO ₄	255 (0.5 A g ⁻¹)	2
Fe ₂ O ₃ /VACNT	2 М КОН	248 (8 A g ⁻¹)	3
rGO/a-Fe ₂ O ₃	2 М КОН	469.5 (4 A g ⁻¹)	4
NiNTAs@Fe ₂ O ₃		$(10.7)^{(10.7)}$	5
nanoneedles	$1 \text{ IVI } \text{IV} a_2 \text{ SO}_4$	416.7 (10 111 v S *)	
Fe ₃ O ₄ @CF	2 M KOH	153.7 (0.2 A g ⁻¹)	6
ZFO-ACFs	2 M KOH	192 (1 A g ⁻¹)	7
α-Fe ₂ O ₃ /NBCS	2 М КОН	452.3 (2 A g ⁻¹)	This work

 Table S2 Comparison of the specific capacitance of some reported iron oxide- or carbon-based

 materials.

References

- 1. N. Sinan and E. Unur, *Mater. Chem. Phys.*, 2016, **183**, 571-579.
- 2. Y. Zhu, S. Cheng, W. Zhou, J. Jia, L. Yang, M. Yao, M. Wang, J. Zhou, P. Wu and M. Liu, ACS Sustainable Chem. Eng., 2017, 5, 5067-5074.
- W. Zhang, B. Zhao, Y. Yin, T. Yin, J. Cheng, K. Zhan, Y. Yan, J. Yang and J. Li, *J. Mater. Chem. A*, 2016, 4, 19026-19036.
- Y. Wang, C. Shen, L. Niu, R. Li, H. Guo, Y. Shi, C. Li, X. Liu and Y. Gong, *J. Mater. Chem. A*, 2016, 4, 9977-9985.
- 5. Y. Li, J. Xu, T. Feng, Q. Yao, J. Xie and H. Xia, *Adv. Funct. Mater.*, 2017, 27, 1606728.
- S. Huang, W. Zhang, S. Cui, W. Wei, W. Chen and L. Mi, *ChemistrySelect*, 2016, 1, 2909-2915.
- S. Yang, Z. Han, F. Zheng, J. Sun, Z. Qiao, X. Yang, L. Li, C. Li, X. Song and B. Cao, *Carbon*, 2018, **134**, 15-21.