1 Evaluation of Different Ni-Semiconductor Composites

2 as Electrodes for Enhanced Hydrogen Evolution

3

Reaction

4	Melisa J. Gomez ^{1,2} , Victoria Benavente Llorente ^{1,2} , Andrew Hainer ² , Gabriela I.
5	Lacconi ¹ , Juan C. Scaiano ² , Esteban A. Franceschini ^{1,2*} , Anabel E. Lanterna ^{2*}
6	
7	¹ INFIQC-CONICET, Departamento de Fisicoquímica – Facultad de Ciencias Químicas, Universidad
8	Nacional de Córdoba, Ciudad Universitaria, 5000 Córdoba, Argentina
9	² Department of chemistry and Biomolecular Sciences, Centre for Advanced Materials Research
10	(CAMaR), University of Ottawa, Ottawa, Canada

11 **Table of Contents**

12	Figure S1. EDS mapping of Ni Nb ₂ O ₅ catalyst
13	Figure S2. EDS mapping of Ni Nb ₃ (PO ₄) ₅ catalyst
14	Figure S3. EDS mapping of Ni Bi ₂ O ₃ catalyst
15	Figure S4. EDS mapping of Ni WO3 catalyst
16	Figure S5. Confocal imaging of Ni SC electrodes after ageing process (4h at -1.5 V vs
17	SCE)
18	Table S1. Ni SC electrodes total area calculated from confocal images in Figure S5 and
19	corresponding roughness factor
20	Figure S6. XRD pattern from the semiconductors used. Note Nb ₂ O ₅ orthorhombic [00-
21	027-1313] and monoclinic crystalline structure [00-016-0053] as well as the amorphous
22	nature of Nb ₃ (PO ₄) ₅ are described in literature ^[1] 9
23	Table S2. Lattice parameters calculated from XRD analysis of the SC before (SC) and
24	after electrodeposition (Ni SC)
25	Figure S7. Ni 2p XPS spectra for Ni SC electrodes 11
26	Figure S8. Ni LMM Auger spectra for Ni SC electrodes12
27	Figure S9. HR XPS spectra for Ni SC electrodes
28	Table S3. XPS analysis for different Ni SC. 14
29	Figure S10. Oxidation/reduction peaks observed close to OP measured in 1.0 M KOH
30	aqueous solution and recorded at 298 K at 10 mVs ⁻¹
31	Figure S11. Tafel curves constructed from cyclic voltammograms measured in 1.0 M
32	KOH aqueous solution and recorded at 298 K at 10 mVs ⁻¹

33	Figure S12. Cyclic voltammograms of freshly synthesised and aged Ni SC catalysts
34	measured in KOH 1.0 M and recorded at 298 K and 10 mVs ⁻¹
35	Figure S13. X-ray diffraction (XRD) pattern of Ni SC electrodes after ageing process (4h
36	at -1.5 V vs SCE)
37	Table S4. Crystallite size calculated using the Scherrer equation for fresh and aged
38	catalysts
39	Figure S14. Raman spectra of Ni SC electrodes after ageing process showing no signals
40	detected in the region where unreactive nickel hydroxide species are expected. ^[4] 18
41	Figure S15. EIS measured for Ni $ Bi_2O_3$ electrodes at 298 K and –1.2 V (vs SCE) fitted
42	with the equivalent circuit models: (a) Randles-CPE, (b) AHEC1CPE, (c) AHEC2CPE.
43	
44	Figure S16. EIS measured for all Ni SC electrodes at 25 °C and at different potentials
45	fitted with the equivalent circuit models Randles-CPE, AHEC1CPE, and AHEC2CPE.
46	
47	Figure S17. SEM imaging of Ni Watts and Ni SC electrodes after ageing process (4h at -
48	1.5 V vs SCE). Scale bar: 1 µm
49	Figure S18. Comparison of SEM micrographs of Ni Nb3(PO4)5 before (left) and after
50	(right) ageing
51	REFERENCES
52	

55 Figure S1. EDS mapping of $Ni|Nb_2O_5$ catalyst.

58 Figure S2. EDS mapping of Ni|Nb₃(PO₄)₅ catalyst.

59

Figure S3. EDS mapping of $Ni|Bi_2O_3$ catalyst. 61

64 Figure S4. EDS mapping of Ni|WO₃ catalyst.

- 67 Figure S5. Confocal imaging of Ni|SC electrodes after ageing process (4h at -1.5 V vs
- 68 SCE).

71 Table S1. Ni|SC electrodes total area calculated from confocal images in Figure S5 and

72 corresponding roughness factor.

	Total Area ^a / µm ²	$R_{\rm f}$
Ni Nb ₂ O ₅	30,841	1.84
Ni Nb3(PO4)5	20,736	1.24
Ni Bi2O3	23,213	1.38
Ni WO ₃	29,732	1.77

^a Geometric area 16,784 μ m².

- 74 Figure S6. XRD pattern from the semiconductors used. Note Nb₂O₅ orthorhombic [00-
- 75 027-1313] and monoclinic crystalline structure [00-016-0053] as well as the amorphous
- 76 nature of Nb₃(PO₄)₅ are described in literature^[1].

- 82 Table S2. Lattice parameters calculated from XRD analysis of the SC before (SC) and
- 83 after electrodeposition (Ni|SC).

	Dlana	2θ		d spacing (Å)	
	r lanc	SC	NiSC	SC	NiSC
WO ₃	001	23.12	23.16	3.84	3.84
Nb_2O_5	040	22.65	22.61	3.92	3.93
Bi ₂ O ₃	120	27.42	27.38	3.25	3.26
$Nb_3(PO_4)_5$					

85 Figure S7. Ni 2p XPS spectra for Ni|SC electrodes.

90 Figure S9. HR XPS spectra for Ni|SC electrodes.

	Ni 2p _{3/2} peak		Ni 2p	1/2 peak		Ni LMM
Compound		$\mathbf{DE}(\mathbf{A}\mathbf{V})$		$\Delta (\mathrm{eV})$	Auger peak	
	BE (ev)	$\Delta E_{\rm B} (eV)$	BE (ev)	$\Delta E_{\rm B}(eV)$		KE (eV)
Ni	852.73 ^[2]		870.10 ^[2]		17.37	846.22 ^[3]
Ni Nb ₂ O ₅	853.20	0.47	870.81	0.71	17.61	845.79
Ni Nb3(PO4)5	852.98	0.25	870.64	0.54	17.67	844.99
Ni Bi ₂ O ₃	852.66	-0.07	870.35	0.25	17.69	846.19
Ni WO ₃	854.66	1.93	872.30	2.20	17.64	844.99

93 Table S3. XPS analysis for different Ni|SC.

- 96 Figure S10. Oxidation/reduction peaks observed close to OP measured in 1.0 M KOH
- 97 aqueous solution and recorded at 298 K at 10 mVs⁻¹.

99 Figure S11. Tafel curves constructed from cyclic voltammograms measured in 1.0 M

Figure S12. Cyclic voltammograms of freshly synthesised and aged Ni|SC catalysts
measured in KOH 1.0 M and recorded at 298 K and 10 mVs⁻¹.

106 Figure S13. X-ray diffraction (XRD) pattern of Ni|SC electrodes after ageing process

107 (4h at -1.5 V vs SCE).

110 Table S4. Crystallite size calculated using the Scherrer equation for fresh and aged

111 catalysts.

	Fresh / nm (± 1 nm)	Aged / nm (± 1 nm)	Plane
Ni Bi2O2	40.7	42.2	(111)
101203	40.0	41.0	(200)
NilNhaOr	42.7	44.0	(111)
111110205	34.2	36.1	(200)
$NiNb_{2}(PO_{1})$	44.8	43.9	(111)
11/11/03(104)5	41.9	39.1	(200)
NilWO	40.7	38.7	(111)
	32.9	34.9	(200)

113 Figure S14. Raman spectra of Ni|SC electrodes after ageing process showing no signals

114 detected in the region where unreactive nickel hydroxide species are expected.^[4]

115

117 with the equivalent circuit models: (a) Randles-CPE, (b) AHEC1CPE, (c) AHEC2CPE.

118 $Z^{*}(\Omega cm^2)$ $Z^{*}(\Omega cm^2)$ $Z^{*}(\Omega cm^2)$ $Z^{*}(\Omega cm^2)$ 119 From the analysis of figures like Figure S14 prepared for each catalyst (Figure S15) we 120 selected the AHEC1CPE model. The main limitation of Randles-CPE equivalent circuit 121 is that it can only be used to fit one half-circle of the Nyquist plot which is commonly 122 associated to the surface roughness^[5-6], while the AHEC2CPE presents an excellent fit 123 for two processes (increase of surface roughness and HER), although the use of a second 124 CPE in replacement of the C_p lacks of physical significance, making the model 125 inappropriate.

126 Figure S16. EIS measured for all Ni|SC electrodes at 25 °C and at different potentials

127 fitted with the equivalent circuit models Randles-CPE, AHEC1CPE, and AHEC2CPE.

- 130 Figure S17. SEM imaging of Ni|Watts and Ni|SC electrodes after ageing process (4h at -
- 131 1.5 V vs SCE). Scale bar: 1 μm.

- 133 Figure S18. Comparison of SEM micrographs of Ni|Nb₃(PO₄)₅ before (left) and after
- 134 (right) ageing.

137 **REFERENCES**

- 138 [1] E. Franceschini, A. Hainer, A. E. Lanterna, *Int. J. Hydrogen Energy* 2019, 44, 31940-31948.
- 140 [2] A. N. Mansour, Surf. Sci. Spectra 1994, 3, 221-230.
- 141 [3] M. C. Biesinger, L. W. M. Lau, A. R. Gerson, R. S. C. Smart, *Phys. Chem.*142 *Chem. Phys.* 2012, *14*, 2434-2442.
- [4] D. S. Hall, D. J. Lockwood, S. Poirier, C. Bock, B. R. MacDougall, J. Phys.
 Chem. A 2012, *116*, 6771-6784.
- 145 [5] A. Lasia, A. Rami, J. Electroanal. Chem. 1990, 294, 123-141.
- 146 [6] L. L. Chen, A. Lasia, J. Electrochem. Soc. 1991, 138, 3321-3328.