Supporting Information for

Modeling response characteristics of photo-sensitive hydrogel electrolytes in Hofmeister salt solution for the development of smart

energy storage devices

Xiao Chen^a, Zhixin Zhan^{b, c, *}, Qimin Liu^d, Tao Wu^{e, f}

^a School of Mechanical and Aerospace Engineering, Nanyang Technological University, Nanyang Avenue, Singapore 639798, Republic of Singapore
^b School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, People's Republic of China
^c Shen Zhen Institute of Beihang University, Shenzhen 518000, People's Republic of China
^d Hubei Key Laboratory of Roadway Bridge & Structure Engineering, Wuhan University of Technology, Wuhan 430070, People's Republic of China
^e Department of Engineering Mechanics, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
^f MIIT Key Laboratory of Dynamics and Control of Complex Systems, Xi'an, 710072, People's Republic of China
*Corresponding author. E-mail address: zzxupc@163.com

List of Table

Parameter	Value
Polymer chain density in the dry gel, N_R [1, 2]	$1.08 \times 10^{25} \text{ m}^{-3}$
Photo-kinetic factor, F_L [3, 4]	1.94
Logarithm of frequency factor, log ($A_T / 1 \text{ s}^{-1}$) [5]	16.96
Activation energy, E_T [5]	114.41 kJ·mol ⁻¹
Interaction parameter at a lower temperature than LCST, χ_L	0.33
Interaction parameter at a higher temperature than LCST, χ_{H}	0.62
Dehydration coefficient, G_{H}^{*} [5-7]	$1.8_{\times}10^{-3} \text{ mM}^{-1}$ at pH<7.0 and 0 mM ⁻¹ at pH≥7.0
Permittivity, & [8]	$7.08 \times 10^{-10} \text{ C}^2 \cdot \text{N}^{-1} \cdot \text{m}^{-2}$
Logarithmic acidity constant of McH ⁺ , pKa ₁ [4]	6.8

Table	S1.	Some	input	parameters	for the	numerical	simulation.

Logarithmic acidity constant of SpH ⁺ , pKa ₂ [4]	2.6
Logarithmic acidity constant of AAH, pKa ₃ [7]	4.2
Logarithmic acidity constant of H ₂ PO ₄ , pKa ₄ [9]	7.21
Logarithmic acidity constant of HPO42-, pKa5 [9]	12.32
Equilibrium constant of water, K _w [8]	10^{-14} M^2
Initial transition temperature, T_0 [6]	33 °C
Temperature width of phase transition, ΔT_c [6]	4 °C
Molar volume of solvent molecule, v [10]	$1.8 \times 10^{-5} \text{ m}^3 \cdot \text{mol}^{-1}$
Ring-opened reaction rate constant, ko [11]	$2.53 \times 10^{-3} \text{s}^{-1}$
Light wavelength, $\lambda_L[6]$	436 nm
Molar absorption coefficient, $\mathcal{E}_{L}[4]$	$2.3_{\times}10^4~M^{\text{1}}~\text{cm}^{\text{1}}$
Quantum yield, $\phi_L[12]$	7%
Polymer-solvent structural constant, k_1 and k_2 [13]	$k_1 = 0.066, \ k_2 = 0.263$
Diffusivity of H ⁺ , \overline{D}_{H^+} [14]	$(8.79-11.20) \times 10^{-9} \mathrm{m}^{2} \cdot \mathrm{s}^{-1}$
Diffusivity of Na ⁺ , \bar{D}_{Na^+} [15]	$(1.20-1.88) \times 10^{-9} \mathrm{m}^{2} \cdot \mathrm{s}^{-1}$
Diffusivity of Cl ⁻ , \overline{D}_{Cl^-} [15]	$(1.84-2.82) \times 10^{-9} \mathrm{m}^{2} \mathrm{s}^{-1}$
Diffusivity of SO ₄ ²⁻ , $\overline{D}_{SO_4^{2-}}$ [15]	$1.07 \times 10^{-9} m^2 \cdot s^{-1}$
Diffusivity of NO ₃ ⁻ , $\overline{D}_{NO_3^-}$ [15]	$(1.75-2.61) \times 10^{-9} \mathrm{m}^{2} \cdot \mathrm{s}^{-1}$
Diffusivity of H ₂ PO ₄ , $\overline{D}_{H_2PO_4^-}$ [16]	$9.59 \times 10^{-10} m^2 \cdot s^{-1}$
Diffusivity of HPO ₄ ²⁻ , $\overline{D}_{HPO_4^{2-}}$ [16]	$7.59{\scriptstyle \times}10^{{\scriptstyle -10}}m^{2}{\rm \cdot}s^{{\scriptstyle -1}}$
Diffusivity of PO ₄ ³⁻ , $\overline{D}_{PO_4^{3-}}$ [16]	$6.1 \times 10^{10} m^{2} \text{-s}^{1}$
Hydrated radii of H ⁺ , r_{H^+} [15]	2.82 Å
Hydrated radii of Na ⁺ , r_{Na^+} [15]	3.58 Å
Hydrated radii of Cl ⁻ , r_{Cl^-} [15]	3.32 Å
Hydrated radii of SO ₄ ²⁻ , $r_{SO_4^{2-}}$ [15]	3.79 Å

Hydrated radii of NO ₃ ⁻ , $r_{NO_3}^-$ [15]	3.35 Å
Hydrated radii of H ₂ PO ₄ ⁻ , $r_{\rm H_2PO_4^-}$ [17]	3.41 Å
Hydrated radii of HPO ₄ ²⁻ , $r_{\text{HPO}_4^{2-}}$ [17]	3.79 Å
Hydrated radii of PO ₄ ³⁻ , $r_{PO_4^{3-}}$ [17]	3.85 Å

References

[1] S. Hirotsu, Softening of bulk modulus and negative Poisson's ratio near the volume phase transition of polymer gels, J. Chem. Phys. 94(5) (1991) 3949-3957.

[2] T.R. Matzelle, G. Geuskens, N. Kruse, Elastic properties of poly(N-isopropylacrylamide) and poly(acrylamide) hydrogels studied by scanning force microscopy, Macromolecules 36(8) (2003) 2926-2931.

[3] V. Pimienta, D. Lavabre, G. Levy, A. Samat, R. Guglielmetti, J.C. Micheau, Kinetic analysis of photochromic systems under continuous irradiation. Application to spiropyrans, J. Phys. Chem. 100(11) (1996) 4485-4490.

[4] K. Sumaru, T. Takagi, T. Satoh, T. Kanamori, Photo-induced reversible proton dissociation of spirobenzopyran in aqueous systems, J Photoch Photobio A 261 (2013) 46-52.

[5] K. Sumaru, M. Kameda, T. Kanamori, T. Shinbo, Characteristic phase transition of aqueous solution of poly(N-isopropylacrylamide) functionalized with spirobenzopyran, Macromolecules 37(13) (2004) 4949-4955.

[6] A. Szilagyi, K. Sumaru, S. Sugiura, T. Takagi, T. Shinbo, M. Zrinyi, T. Kanamori, Rewritable microrelief formation on photoresponsive hydrogel layers, Chem. Mater. 19(11) (2007) 2730-2732.

[7] B. Ziolkowski, L. Florea, J. Theobald, F. Benito-Lopez, D. Diamond, Self-protonating spiropyran-co-NIPAM-co-acrylic acid hydrogel photoactuators, Soft Matter 9(36) (2013) 8754-8760.

[8] D. Ball, Physical Chemistry, Cengage Learning2002.

[9] Table of Acids with Ka and pKa Values (Compiled from Appendix 5 Chem 1A, B, C Lab Manual and Zumdahl 6th Ed.The pKa values for organic acids can be found in Appendix II of Bruice 5th Ed.). Retrieved from:

http://clas.sa.ucsb.edu/staff/Resource%20folder/Chem109ABC/Acid,%20Base%20Str ength/Table%20of%20Acids%20w%20Kas%20and%20pKas.pdf.

[10] M. Curatolo, P. Nardinocchi, E. Puntel, L. Teresi, Transient instabilities in the swelling dynamics of a hydrogel sphere, J. Appl. Phys. 122(14) (2017).

[11] B. Ziółkowski, L. Florea, J. Theobald, F. Benito-Lopez, D. Diamond, Porous self-protonating spiropyran-based NIPAAm gels with improved reswelling kinetics, J Mater Sci 51(3) (2015) 1392-1399.

[12] T. Halbritter, C. Kaiser, J. Wachtveitl, A. Heckel, Pyridine–Spiropyran Derivative as a Persistent, Reversible Photoacid in Water, The Journal of organic chemistry 82(15) (2017) 8040-8047.

[13] B. Amsden, Solute diffusion within hydrogels. Mechanisms and models, Macromolecules 31(23) (1998) 8382-8395.

[14] S.H. Lee, J.C. Rasaiah, Proton transfer and the mobilities of the H+ and OH- ions from studies of a dissociating model for water, J. Chem. Phys. 135(12) (2011) 124505.
[15] E. Nightingale Jr, Phenomenological theory of ion solvation. Effective radii of hydrated ions, The Journal of Physical Chemistry 63(9) (1959) 1381-1387.

[16] J. Buffle, Z. Zhang, K. Startchev, Metal flux and dynamic speciation at (bio) interfaces. Part I: critical evaluation and compilation of physicochemical parameters for complexes with simple ligands and fulvic/humic substances, Environmental science & technology 41(22) (2007) 7609-7620.

[17] B.R. Breslau, I.F. Miller, A hydrodynamic model for electroosmosis, Industrial & Engineering Chemistry Fundamentals 10(4) (1971) 554-565.