+ Electronic Supplementary Information (ESI)

New Insights into Phenazine-based Organic Redox Flow Batteries by using High-

Throughput DFT Modeling

A) Details about the DME solvent in the SMD solvation model with the GAUSSIAN 16 software

The DME solvent can be defined within the SMD solvation model in the GAUSSIAN 16 software with the following input file:

#p M062X/6-31+G(d,p)/auto integral=(grid=ultrafine)
scf=(intrep,xqc,maxconventionalcycles=350,tight) Guess=Read Geom=Check
SCRF=(SMD,Solvent=Generic,read)

[Title]

01

stoichiometry=C4O2H10 solventname=DimethoxyEthane eps=7.55 epsinf=1.896129 hbondacidity=0.00 hbondbasicity=0.68 SurfaceTensionAtInterface=35.4216652 CarbonAromaticity=0.0 ElectronegativeHalogenicity=0.0

The required solvent descriptors (refractive index; Abraham's hydrogen bond acidity and basicity parameters; macroscopic surface tension; dielectric constant at 298.15K have been obtained from $^{1, 2, 3}$:

B) Experimental Results

Figure S1. Cyclic voltammetry at different scan rates of 5 mM phenazine in 1,2dimethoxyethane with 0.5 M of TBAPF₆ as supporting salt.

Figure S1 shows a fully reversible first peak at potential $E_{1/2}^{\circ} = -1.74$ V vs Fc/Fc⁺ corresponding to the reduction of phenazine to generate the radical anion in aprotic media (Scheme 1). However, the second reduction peak corresponding to the formation of the dianion is not reversible and the reduction potential cannot be estimated accurately. Actually, the well-known irreversible character of this second reaction limits the specific capacity of phenazine-based anolytes in redox flow batteries (RFB) since only one electron per molecule is involved in the energy storage. Therefore, only the first reduction reaction will be investigated and all calculations for the functionalized compounds will refer to this reaction.

C) Computational Results

1. Intermolecular Hydrogen-bonding

Figure S2. Bond angles and distances between the proton from the FG and the nitrogen from the oxidized (neutral) and reduced (mono-anion) phenazine for the $-NH_2$, -OH, -SH, $-N(CH_3)_2$, $-OCH_3$, -COOH and $-CONH_2$ FGs at the position 1.

In Figure S2, we present the main geometrical features (bond distances and angles) between the proton from the $-NH_2$, -OH, -SH, $-N(CH_3)_2$, $-OCH_3$, -COOH and $-CONH_2$ FGs and the nitrogen atom of the Phenazine in the oxidized (neutral) and reduced (mono-anion) form. Based on these values, we can consider the formation of weak H-bonds between the proton from the FGs and the nitrogen atom of the phenazine. The H-bonds become stronger in the reduced (anionic) state, as corroborated by the shorter distances.

2. Reorganization Energies

Figure S3. Reorganization energies of the functionalized phenazines on R1 position.

Figure S4. Reorganization energies of the functionalized phenazines on R2 position.

3. Root-mean-square deviation (RMSD) between the optimized coordinates of the neutral and reduced state of the phenazine species

Figure S5. RMSD values of the phenazines functionalized on R1 position.

Figure S6. RMSD values of the phenazines functionalized on R2 position.

Table S1. RMSD values of the phenazines functionalized with the best candidates and
the main anolytes used in non-aqueous RFB.

Compound	RMSD
Pz-(CN) ₄	0.0199
Pz-(CN) ₃	0.0255
Pz-(CN) ₂	0.0621
Pz-CN	0.0285
Phenazine	0.0245
Pz-NH ₂	0.0476
Pz-(NH2) ₂	0.0362
Pz-(NH2) ₃	0.0500
Pz-(NH2) ₄	0.0405
MePht	0.0277
FI	0.0182
DMAQ	0.3208

Table S2: Calculated Redox Potentials of all phenazine derivatives.

	Functional Group	FG	E1 (V) vs
	(FG)	POSITION	Fc/Fc+
Phenazine	-	-	-1.74
1	N(CH ₃) ₂	1	-1.85
2	N(CH ₃) ₂	2	-1.98
3	NH ₂	1	-1.85
4	NH ₂	2	-1.92
5	OH	1	-1.69
6	OH	2	-1.81
7	OCH ₃	1	-1.75
8	OCH ₃	2	-1.86
9	$P(CH_3)_2$	1	-1.74
10	$P(CH_3)_2$	2	-1.75
11	$S(CH_3)_2$	1	-1.74
12	$S(CH_3)_2$	2	-1.77
13	SH	1	-1.66
14	SH	2	-1.72
15	CH ₂ =CH	1	-1.73
16	CH ₂ =CH	2	-1.72
17	C ₆ H ₅	1	-1.76
18	C ₆ H ₅	2	-1.73
19	CH ₃	1	-1.79
20	CH ₃	2	-1.79
21	F	1	-1.63
22	F	2	-1.68
23	Cl	1	-1.61
24	Cl	2	-1.63
26	СНО	1	-1.50
27	СНО	2	-1.51
28	COCH ₃	1	-1.58
29	COCH ₃	2	-1.55
30	CONH ₂	1	-1.52
31	CONH ₂	2	-1.63
32	COOCH ₃	1	-1.62
33	COOCH ₃	2	-1.57
34	СООН	1	-1.30
35	СООН	2	-1.53
36	CF ₃	1	-1.53
37	CF ₃	2	-1.55
38	CN	1	-1.42
39	CN	2	-1.43
40	NO ₂	1	-1.35
41	NO ₂	2	-1.29
42	CN	1 2	-1.04
43	CN	13	-1.10
44	CN	14	-1.06
45	CN	16	-1.14
46	CN	17	-1.15

47	CN	18	-1.14
48	CN	19	-1.15
49	CN	23	-1.18
50	CN	27	-1.04
51	CN	28	-1.15
52	CN	1 2 3	-0.79
53	CN	124	-0.68
54	CN	126	-0.81
55	CN	127	-0.80
56	CN	128	-0.80
57	CN	129	-0.81
58	CN	136	-0.85
59	CN	137	-0.86
60	CN	138	-0.83
61	CN	139	-0.86
62	CN	146	-0.82
63	CN	147	-0.81
64	CN	236	-0.89
65	CN	237	-0.89
66	CN	1234	-0.37
67	CN	1236	-0.56
68	CN	1237	-0.55
69	CN	1 2 3 8	-0.54
70	CN	1239	-0.57
71	CN	1246	-0.48
72	CN	1247	-0.45
73	CN	1248	-0.46
74	CN	1249	-0.47
75	CN	1267	-0.52
76	CN	1268	-0.69
77	CN	1278	-0.58
78	CN	1289	-0.52
79	CN	1367	-0.55
80	CN	1368	-0.57
81	CN	1369	-0.56
82	CN	1379	-0.59
83	CN	1469	-0.56
84	CN	1478	-0.58
85	CN	2378	-0.64
86	CN	1 2 3 4 6 9	0.02
87	CN	1 2 3 6 7 8	-0.11
88	CN	123789	-0.06
89	CN	236789	-0.06
90	CN	12346789	0.51
91	NH ₂	12	-1.93
92	NH ₂	13	-2.03
93	NH ₂	14	-1.89
94	NH ₂	16	-1.96

95	NH ₂	17	-2.02
96	NH ₂	18	-2.02
97	NH ₂	19	-1.95
98	NH ₂	23	-2.04
99	NH ₂	2 7	-2.05
100	NH ₂	28	-2.09
101	NH ₂	123	-2.04
102	NH ₂	124	-2.01
103	NH ₂	126	-2.04
104	NH ₂	127	-2.09
105	NH ₂	1 2 8	-2.09
106	NH ₂	1 2 9	-2.02
107	NH ₂	136	-2.13
108	NH ₂	137	-2.19
109	NH ₂	1 3 8	-2.15
110	NH ₂	139	-1.94
111	NH ₂	146	-1.99
112	NH ₂	147	-2.05
113	NH ₂	236	-2.12
114	NH ₂	237	-2.20
115	NH ₂	1 2 3 4	-2.10
116	NH ₂	1 2 3 6	-2.18
117	NH ₂	1237	-2.23
118	NH ₂	1 2 3 8	-2.22
119	NH ₂	1 2 3 9	-2.11
120	NH ₂	1246	-2.12
121	NH ₂	1247	-2.19
122	NH ₂	1248	-2.18
123	NH ₂	1249	-2.10
124	NH ₂	1267	-2.11
125	NH ₂	1269	-2.07
126	NH ₂	1278	-2.22
127	NH ₂	1289	-2.11
128	NH ₂	1367	-2.21
129	NH ₂	1368	-2.25
130	NH ₂	1369	-2.34
131	NH ₂	1379	-2.29
132	NH ₂	1469	-2.02
133	NH ₂	1478	-2.27
134	NH ₂	2378	-2.32
135	NH ₂	1 2 3 6 7 8	-2.38
136	NH ₂	123789	-2.36
137	NH ₂	236789	-2.35
138	NH ₂	123469	-2.21
139	NH ₂	12346789	-2.39
140	OH	1 2	-1.84
141	OH	17	-1.87
142	OH	18	-1.86

143	OH	19	-1.74
144	ОН	23	-1.93
145	ОН	27	-1.89
146	OH	28	-1.88
147	OH	127	-1.80
148	OH	1 2 8	-1.82
149	ОН	137	-1.84
150	ОН	1 3 8	-1.82
151	ОН	236	-1.85
152	OH	237	-1.93
153	OH	1 2 3 4	-1.78
154	OH	1236	-1.76
155	OH	1237	-1.87
156	OH	1 2 3 8	-1.87
157	OH	1239	-1.76
158	OH	1248	-1.76
159	OH	1278	-1.73
160	OH	1367	-1.77
161	OH	1368	-1.76
162	OH	1379	-1.78
163	OH	1478	-1.55
164	OH	2378	-1.99
165	OH	123678	-1.90
166	OH	12346789	-1.80
167	NO ₂	1 2	-0.91
168	NO ₂	13	-0.96
169	NO ₂	14	-0.92
170	NO ₂	16	-1.11
171	NO ₂	18	-1.03
172	NO ₂	19	-1.14
173	NO ₂	23	-1.10
174	NO ₂	2 7	-0.94
175	NO ₂	123	-0.74
176	NO ₂	124	-0.56
177	NO ₂	146	-0.75
178	NO ₂	147	-0.70
179	NO ₂	237	-0.74
180	NO ₂	1234	-0.31
181	NO ₂	1246	-0.36
182	NO ₂	1247	-0.29
183	NO ₂	1248	-0.30
184	NO ₂	1249	-0.34
185	NO ₂	1267	-0.35
186	NO ₂	1469	-0.52
187	NO ₂	2378	-0.52
188	NO ₂	123469	0.16
189	NO ₂	12346789	0.80

Cartesian coordinates for all structures can be downloaded from a public repository: <u>https://osf.io/y8hvd/?view_only=0debc99e089f4edb864d74553eb2559d</u>

References:

- 1 R. David Lide, Ed., *CRC Handbook of Chemistry and Physics, Internet Version* 2005, CRC Press, Taylor & Francis Group, Boca Raton, FL, 2005.
- 2 Christian Wohlfarth, *Surface tension of pure liquids and binary liquid mixtures*, Springer-Verlag Berlin Heidelberg, 2008.
- 3 J. C. Bradley, M. H. Abraham, W. E. Acree and A. S. I. D. Lang, *Chem. Cent. J.*, , DOI:10.1186/s13065-015-0085-4.