Supporting Information

Fabrication of lead-free $CsBi_3I_{10}$ based compact perovskite thin films by employing solvent engineering and anti-solvent treatment techniques: An efficient photo-conversion efficiency up to 740nm

Pandiyarajan Mariyappan^{a,b}, Towhid H. Chowdhury^a, Shanthi Subashchandranb^{b*}, Idriss

Bedja^c, Hamid M. Ghaithan^c, Ashraful Islam^{a*}

^a Photovoltaic Materials Group, Center for Green Research on Energy and Environment

Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-

0047, Japan.

^b Crystal Growth Centre, Anna University, Chennai- 600025, Tamil Nadu, India.

^c Cornea Research Chair, Optometry Department, College of Applied Medical Sciences,

King Saud University, Riyadh 11433, Saudi Arabia

Figure S1. (a) X-Ray Diffraction pattern, (b) UV- Visible absorption spectrum, (c) Tauc plot and (d) work function measurement for the ABi_3I_{10} , (A= Cs, MA and FA) perovskite thin-films.

Figure S2. SEM surface images of (a) $CsBi_3I_{10}$, (b) $FABi_3I_{10}$, (c) $MABi_3I_{10}$ perovskite thin-films

Figure S3. Higher magnification SEM surface images of (a) Chlorobenzene , (b) Isopropanol, (c) Toluene anti-solvents treated perovskite thin-films

Devices	J _{sc} (mA/cm ²)	V _{oc} (V)	Fill factor	η (%)
	Chlorobenzene ^b			
Device 1	2.200	0.651	0.271	0.38
Device 2	1.989	0.633	0.224	0.28
Device 3	1.890	0.492	0.263	0.24
	Toluene ^b			
Device 1	1.168	0.533	0.210	0.13
Device 2	1.224	0.439	0.180	0.10
Device 3	1.286	0.521	0.101	0.07
	Isopropanol ^b			
Device 1	0.818	0.377	0.230	0.07
Device 2	0.875	0.282	0.216	0.05
Device 3	0.685	0.304	0.202	0.04
	Only DMF ^c			
Device 1	0.440	0.279	0.227	0.03
Device 2	0.416	0.398	0.185	0.03
Device 3	0.156	0.41	0.078	0.01

Table ST1 : Device performance comparison of the PSCs fabricated with $CsBi_3I_{10}$ perovskite material as absorber.^a

^aJ-V measured in forward bias. ^bCsBi₃I₁₀ layer prepared from 7:3 (DMF:DMSO) solvent ratio and treated with different anti-solvent dripping. ^cCsBi₃I₁₀ layer prepared from only DMF solvent and without anti-solvent dripping.