Supporting information

Novel homogeneous selective electrocatalysts for CO₂ reduction: an electrochemical and computational study of cyclopentadienyl-phenylendiamino-cobalt complexes.

Nicola Melis†, Francesca Mocci ‡, Annalisa Vacca† and Luca Pilia†*

† Dipartimento di Ingegneria Meccanica Chimica e dei Materiali, Università di Cagliari, via

Marengo 2, I09123, Cagliari, Italy

‡ Dipartimento di Scienze Chimiche e Geologiche, Università di Cagliari, S.S. 554 Km 4,500,

I09042 Monserrato, Italy

* E-mail: pilialuc@unica.it

Contents

Synthesis
Figure S1. Graph I vs $(v)^{0.5}$ of oxidation and reduction processes of complex I and specifics of the
corresponding linear fits
Figure S2. Graph I vs $(v)^{0.5}$ of oxidation and reduction processes of complex II and specifics of the
corresponding linear fits
Figure S3 . Graph I vs $(v)^{0.5}$ of oxidation and reduction processes of complex III and specifics of the
corresponding linear fits
Figure S4. Frontier orbitals of the complexes I-IV with the corresponding energies
Figure S5. Specifics for the linear fit on Figure 3
Figure S6. ADCH partial charge on different moieties of the anionic form of the complexes. Blue: carbon
atoms of the benzene; Green: Cobalt atom; Orange: carbon atoms of cyclopentadienyl; Yellow: N-Co-N
moiety
Table S1. Calculated enhancements (Icat/Ip) at increasing amount of water. S5
Table S2. Calculated TOF value using equation (4) at increasing amount of water for complexes I-IVS6
Table S3. PCM//6-311++G(d,p) enthalpies of the neutral and anionic form of compounds I-IV
Figure S7 . PCM(CH ₃ CN) B3LYP 6-311++g(d,p) optimized geometries of the two minima of compounds
IV in the neutral form
Table S4. FMO energies for neutral and anionic (reduced) complexes I-IV. S7
Scheme S1. Reaction scheme for a ECEC mechanism

Synthesis

Complex IV - [CpCo(p-carboxy-bqdi)] - To a suspension of 0.8 g (2 mmol) of the precursor C₃H₃Co(CO)I₂in 30 mL of diethyl ether is added portionwise 0.34 g (2 mmol) of p-carboxyphenylendiamine and thereaction mixture was stirred at room temperature for 1 xh. The purplish red mixture is therefore dropwiseadded of 0.4 g (0.56 mL, 4 mmol) of Et₃N in 10 mL of diethylether and vigourously stirred for 1.5 h andthe formation of a dark precipitate is observed. A first portion of the solid is separated by centrifugationand another portion after slow evaporation of the mother liquor. The precipitate is then washed with hexaneand diethyl ether to yield a dark purple bronze solid (340 mg, 66%).**IR**(ATR)*cm*⁻¹: 3327 (br), 3112, 1555,1525, 1373, 1282, 1207, 1106, 1053, 1003, 780.

Equation	y = a + b*x		
Weight	No Weighting		
Residual Sum of Squares	0,68413	1,39105	
Pearson's r	0,99606	-0,99217	
Adj. R-Square	0,98822	0,97659	
		Value	Standard Error
LO1 (N2)	Intercept	-2,73298	0,8247
1-01 (NZ)	Slope	0,95719	0,06023
I-R1 (N2)	Intercept	1,20459	1,17597
	Slope	-0,9646	0,08588

Figure S1. Graph I vs $(v)^{0.5}$ of oxidation and reduction processes of complex I and specifics of the corresponding linear fits.

Figure S2. Graph I vs $(v)^{0.5}$ of oxidation and reduction processes of complex II and specifics of the corresponding linear fits.

Figure S3. Graph I vs $(v)^{0.5}$ of oxidation and reduction processes of complex III and specifics of the corresponding linear fits.

Figure S4. Frontier orbitals of the complexes I-IV with the corresponding energies.

Equation	y = a + b*x		
Weight	No Weighting		
Residual Sum of Squares	1,07717E-4		
Pearson's r	0,99895		
Adj. R-Square	0,9958		
		Value	Standard Error
E	Intercept	-0,50537	0,02943
	Slope	0,70477	0,03234

Figure S5. Specifics for the linear fit on Figure 3.

Figure S6. ADCH partial charge on different moieties of the anionic form of the complexes. Blue: carbon atoms of the benzene; Green: Cobalt atom; Orange: carbon atoms of cyclopentadienyl; Yellow: N-Co-N moiety.

	E (V)	Catalitic enhancement (<i>Icat/Ip</i>)						
Ι	-2.09	4.12	8.24	17.15	21.20	22.55	24.40	1.09
II	-2.13	5.59	10.61	18.27	24.44	30.69	31.07	1.04
TTT	-1.52	4.53	4.15	3.89	3.72	4.09	3.49	1.89
111	-2.13	1.11	1.61	2.37	3.656	3.665	3.25	0.76
	-1.74	2.78	3.44	4.84	6.16	7.58	7.13	1.78
IV	-1.91	3.36	5.54	7.80	9.53	9.53	9.97	2.49
	-2.13	3.78	5.30	7.57	9.13	8.73	9.00	5.01
Wat	ter content (% _{v/v})	0	1.96	3.84	5.66	7.41	9.09	9.09
Atı	mosphere	CO ₂	CO ₂	CO ₂	CO_2	CO ₂	CO ₂	N ₂

Table S1. Calculated enhancements (Icat/Ip) at increasing amount of water.

	E (V)			T	OF		
Ι	-2.09	3.29	13.17	57.04	87.16	98.61	115.46
II	-2.13	6.06	21.83	64.73	115.84	182.66	187.21
III	-1.52	3.98	3.34	2.93	2.68	3.24	2.36
111	-2.13	0.24	0.50	1.09	2.59	2.60	2.05
	-1.74	1.49	2.29	4.54	7.36	11.14	9.86
IV	-1.91	2.19	5.95	11.80	17.61	17.61	19.27
	-2.13	2.77	5.44	11.11	16.16	14.78	15.70
Wa	ater content (% _{v/v})	0	1.96	3.84	5.66	7.41	9.09

Table S2. Calculated TOF value using equation (4) at increasing amount of water for complexes I-IV.

Table S3. PCM//6-311++G(d,p) enthalpies of the neutral and anionic form of compounds I-IV

		Neutral	Anion	ΔH
		(Hartree)	(Hartree)	(kcal/mol)
Ι	DMSO	-1918.03027	-1918.15493	-0.12465
	CH ₃ CN	-1918.03019	-1918.15435	-0.12415
II	DMSO	-2315.10720	-2315.24401	-0.13681
	CH ₃ CN	-2315.10711	-2315.24352	-0.13641
III	DMSO	-2122.60192	-2122.74596	-0.14404
	CH ₃ CN	-2122.60176	-2122.74539	-0.14364
$\mathbf{IV} (2a)^{[a]}$	DMSO	-2106.65811	-2106.79257	-0.13446
	CH ₃ CN	-2106.65791	-2106.79190	-0.13399
IV (2b) ^[a]	DMSO	-2106.65778	-2106.79274	-0.13496
	CH ₃ CN	-2106.65781	-2106.79207	-0.13426

^[a] **2a** and **2b** differ for the orientation of the COOH group, as shown in figure S6

Figure S7. PCM(CH₃CN) B3LYP 6-311++g(d,p) optimized geometries of the two minima of compounds **IV** in the neutral form.

Complex	Orbital	Energy (Hartrees)	Energy (eV)	Energy (kJ/mol)
	LUMO alfa	-0.01920	-0.52246	-50.40960
r r 1-1	LUMO beta	-0.00828	-0.22531	-21.73914
	HOMO alfa	-0.13275	-3.61231	-348.53512
	HOMO beta	-0.15555	-4.23273	-408.39656
(1)	LUMO	-0.09100	-2.47624	-238.92052
[1]	НОМО	-0.19527	-5.31357	-512.68142
	LUMO alfa	-0.02904	-0.79022	-76.24453
r rr 1-1	LUMO beta	-0.02257	-0.61416	-59.25754
	HOMO alfa	-0.14561	-3.96225	-382.29908
	HOMO beta	-0.16999	-4.62566	-446.30878
[II]	LUMO	-0.10211	-2.77856	-268.08983
	НОМО	-0.20902	-5.68773	-548.78205
[III] ^{.1}	LUMO alfa	-0.19851	-5.40174	-521.18804
	LUMO beta	-0.07411	-2.01664	-194.57582
	HOMO alfa	-0.15344	-4.17532	-402.85675
	HOMO beta	-0.17754	-4.83111	-466.13131
[III]	LUMO	-0.11276	-3.06836	-296.05140
	НОМО	-0.21211	-5.77181	-556.89485
[IV] ⁻¹	LUMO alfa	-0.02981	-0.81117	-78.26616
	LUMO beta	-0.03228	-0.87839	-84.75115

Table S4. FMO energies for neutral and anionic (reduced) complexes I-IV.

	HOMO alfa	-0.14300	-3.89123	-375.44653
	HOMO beta	-0.16633	-4.52607	-436.69945
[187]	LUMO	-0.09989	-2.71815	-262.26122
[]V]	НОМО	-0.20413	-5.55466	-535.94335

Scheme S1. Reaction scheme for a ECEC mechanism.