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Supporting Information:

Figure S1. SEM (a) and Raman spectrum (b) of bare structure of g-C3N4 before CVD growth with SnCl2-C2H5O 
precursor.

Figure S2. Elemental mapping of Sn_NCF2.
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Figure S3. Pore size distribution of dendritic Sn/C nanostructured samples

Figure S4. Cyclic voltammograms of Sn_NCF1 (a), Sn_NCF2 (b), Sn_NCF3 (c) and  Sn_NCF4 (d), at scan rates 
within the range of 5 – 50 mV s-1 
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Figure S5. Polarization curve of g-C3N4 before and after 1000 cycles

Figure S6. XPS spectrum of Sn 3d for Sn_NCF2 (a) before and (b) after cyclic HER testing for 8 hours
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Table S1. Specific surface area and total pore volume of g-C3N4 and dendritic Sn/C nanostructured samples

Samples BET specific surface area (m2 g-1) Total pore volume (cm3 g-1)

g-C3N4 76.52 0.21

Sn_NCF1 107.33 0.34

Sn_NCF2 99.89 0.31

Sn_NCF3 86.91 0.27

Sn_NCF4 73.24 0.19

Table S2: Comparison of the HER performance for different carbon-based nanocomposites.

Catalysts Electrolyte 
concentration 
(mol L-1)

Potential at -10 
mA cm-2

(V vs. RHE)

Tafel slope

(mV dec-1)

Reference

Sn_NCF2 0. 5M H2SO4 0.260 53 This work

g-C3N4@S–Se-pGr 0.5 M H2SO4 0.300 86 [9]

CoPt/mpg-C3N4 0.5 M H2SO4 - 109 [11]

NG_Mo 0.1 M H2SO4 0.141 105 [21]

C3N4@NG 0.5 M H2SO4 0.240 51.1 [22]

N,S-G 0.5 M H2SO4 0.276 81 [18]

N,P-G 0.5 M H2SO4 0.420 91 [19]
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