## In Situ Fabrication of Dendritic Tin-Based Carbon Nanostructures for Hydrogen Evolution Reaction

Oluwafunmilola Ola<sup>a\*</sup>, Yu Chen<sup>b</sup>, Kunyapat Thummavichai<sup>b, c</sup> and Yanqiu Zhu<sup>b</sup>

<sup>a</sup>Faculty of Engineering, The University of Nottingham, University Park, Nottingham, NG7 2RD, United Kingdom

<sup>b</sup>College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QF, UK

<sup>c</sup>Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Resources, Environment and Materials, Guangxi University, Nanning, China.

\*Corresponding author. Tel: +44 1157 487264. E-mail: Oluwafunmilola.Ola@nottingham.ac.uk

## **Supporting Information**:



Figure S1. SEM (a) and Raman spectrum (b) of bare structure of  $g-C_3N_4$  before CVD growth with  $SnCl_2-C_2H_5O$  precursor.



Figure S2. Elemental mapping of Sn\_NCF2.



Figure S3. Pore size distribution of dendritic Sn/C nanostructured samples



Figure S4. Cyclic voltammograms of Sn\_NCF1 (a), Sn\_NCF2 (b), Sn\_NCF3 (c) and Sn\_NCF4 (d), at scan rates within the range of 5 - 50 mV s<sup>-1</sup>



Figure S5. Polarization curve of g- $C_3N_4$  before and after 1000 cycles



Figure S6. XPS spectrum of Sn 3d for Sn\_NCF2 (a) before and (b) after cyclic HER testing for 8 hours

| Samples                         | BET specific surface area (m <sup>2</sup> g <sup>-1</sup> ) | Total pore volume (cm <sup>3</sup> g <sup>-1</sup> ) |  |
|---------------------------------|-------------------------------------------------------------|------------------------------------------------------|--|
| g-C <sub>3</sub> N <sub>4</sub> | 76.52                                                       | 0.21                                                 |  |
| Sn_NCF1                         | 107.33                                                      | 0.34                                                 |  |
| Sn_NCF2                         | 99.89                                                       | 0.31                                                 |  |
| Sn_NCF3                         | 86.91                                                       | 0.27                                                 |  |
| Sn_NCF4                         | 73.24                                                       | 0.19                                                 |  |

Table S1. Specific surface area and total pore volume of g-C<sub>3</sub>N<sub>4</sub> and dendritic Sn/C nanostructured samples

Table S2: Comparison of the HER performance for different carbon-based nanocomposites.

| Catalysts                                 | Electrolyte<br>concentration<br>(mol L <sup>-1</sup> ) | Potential at -10<br>mA cm <sup>-2</sup><br>(V vs. RHE) | Tafel slope<br>(mV dec <sup>-1</sup> ) | Reference |
|-------------------------------------------|--------------------------------------------------------|--------------------------------------------------------|----------------------------------------|-----------|
| Sn_NCF2                                   | 0. 5M H <sub>2</sub> SO <sub>4</sub>                   | 0.260                                                  | 53                                     | This work |
| g-C <sub>3</sub> N <sub>4</sub> @S-Se-pGr | 0.5 M H <sub>2</sub> SO <sub>4</sub>                   | 0.300                                                  | 86                                     | [9]       |
| $CoPt/mpg-C_3N_4$                         | 0.5 M H <sub>2</sub> SO <sub>4</sub>                   | -                                                      | 109                                    | [11]      |
| NG_Mo                                     | 0.1 M H <sub>2</sub> SO <sub>4</sub>                   | 0.141                                                  | 105                                    | [21]      |
| $C_3N_4$ (a) NG                           | 0.5 M H <sub>2</sub> SO <sub>4</sub>                   | 0.240                                                  | 51.1                                   | [22]      |
| N,S-G                                     | 0.5 M H <sub>2</sub> SO <sub>4</sub>                   | 0.276                                                  | 81                                     | [18]      |
| N,P-G                                     | 0.5 M H <sub>2</sub> SO <sub>4</sub>                   | 0.420                                                  | 91                                     | [19]      |

## References:

- [9] S. S. Shinde, A. Sami and J.-H. Lee, "Electrocatalytic hydrogen evolution using graphitic carbon nitride coupled with nanoporous graphene co-doped by S and Se," *Journal of Materials Chemistry A*, 10.1039/C5TA02656C 3(2015)12810-12819. 10.1039/C5TA02656C.
- [11] R. C. P. Oliveira, M. Sevim, B. Šljukić, C. A. C. Sequeira, Ö. Metin and D. M. F. Santos, "Mesoporous graphitic carbon nitride-supported binary MPt (M: Co, Ni, Cu) nanoalloys as electrocatalysts for borohydride oxidation and hydrogen evolution reaction," *Catal Today*, (2019). <u>https://doi.org/10.1016/j.cattod.2019.09.006</u>.
- [18] Y. Ito, W. Cong, T. Fujita, Z. Tang and M. Chen, "High catalytic activity of nitrogen and sulfur co-doped nanoporous graphene in the hydrogen evolution reaction," *Angew Chem*, 127(2015)2159-2164.
- [19] Y. Zheng *et al.*, "Toward Design of Synergistically Active Carbon-Based Catalysts for Electrocatalytic Hydrogen Evolution," *ACS Nano*, 8(2014)5290-5296. 10.1021/nn501434a.
- [21] S. Chen, J. Duan, Y. Tang, B. Jin and S. Zhang Qiao, "Molybdenum sulfide clusters-nitrogen-doped graphene hybrid hydrogel film as an efficient three-dimensional hydrogen evolution electrocatalyst," *Nano Energy*, 11(2015)11-18. <u>https://doi.org/10.1016/j.nanoen.2014.09.022</u>.

[22] Y. Zheng *et al.*, "Hydrogen evolution by a metal-free electrocatalyst," *Nature Communications*, 5(2014)3783. 10.1038/ncomms4783.