## 1 Electronic Supplementary Information (ESI)

2

# 3 On the role of local heating on cathode degradation during the 4 oxygen reduction reaction in solid acid fuel cells

- 5 Maximilian Wagner<sup>a+</sup>, Oliver Lorenz<sup>a</sup>, Felix P. Lohmann-Richters<sup>b</sup>, Aron Varga<sup>a</sup> and Bernd Abel<sup>a</sup>
- <sup>6</sup> <sup>a</sup>Leibniz Institute for Surface Engineering, Chemical Department, Permoserstraße 15, 043187 Leipzig, Germany
- <sup>8</sup> <sup>b</sup>Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung Elektrochemische
  <sup>9</sup> Verfahrenstechnik (IEK-14), 52425 Jülich, Germany
- 10 <sup>c</sup>BMW Group, Department Electrical Drive Development, Taunusstraße 41, 80807 Munich, 11 Germany
- 12

13 +Corresponding author. Email: maximilian.wagner@iom-leipzig.de, Tel.: +49 341 235 3365

14

### 15 S1: Mass normalized current density

16 CP/Pt@CDP<sub>porous</sub>-MEAs achieve current densities during cell I-V characterization of up 150 mA cm<sup>-2</sup>

17 with a platinum loading of 64  $\mu$ g cm<sup>-2</sup> per electrode (as published previously).<sup>[1]</sup> This results in a

18 platinum normalized current density of about 2300 mA mg<sub>Pt</sub>-1. State of the art solid acid fuel cells with

- 19 a powder electrode were reported by Papandrew et al. with maximum current densities of 1.2 A cm<sup>-2</sup>
- 20 during I-V characterization and a platinum loading of 1.75 mg cm<sup>-2</sup>, resulting in 685 mA mg<sub>Pt</sub><sup>-1.[2]</sup>

#### 21 S2: Electrode generation using a spray drying process

22 Set of spray dryer and precursor parameters used to deposit porous  $CsH_2PO_4$  electrodes as reported previously.<sup>[1]</sup>

| Precursor parameters |                     |                       |       | Spray dryer parameters   |                                    |                       |  |
|----------------------|---------------------|-----------------------|-------|--------------------------|------------------------------------|-----------------------|--|
| CsH₂PO₄<br>conc.     | Methanol<br>content | PVP conc.             | Temp. | Carrier gas<br>flow rate | Precursor<br>solution flow<br>rate | Atomizer<br>mesh size |  |
| 10 g l-1             | 44 wt%              | 0.3 g l <sup>-1</sup> | 303 K | 80 l min <sup>-1</sup>   | 1.5 ml min <sup>-1</sup>           | 4 µm                  |  |

23

- 24 Previously optimized precursor and spray parameters were used for the spray drying process.<sup>[1]</sup> To
- 25~ generate a 15  $\mu m$  thick porous layer, a spraying time of 100 min was needed. The porous structure
- 26 was applied to both sides of a CsH<sub>2</sub>PO<sub>4</sub> pellet one by one. A costume made holder was used to prevent
- 27 damage to the already modified side.



2 Costume made cell holder to protect the generated porous structure.



3

1

4 Representative SEM micrographs of the porous electrode after the spray drying process.



## 5 S3: Open circuit voltage

6 7

7 Open circuit potential for all MEA types over time. No significant change in the open circuit voltage was detected within the 8 measurement time.

## 1 S4: X-ray diffraction experiment



2

- 3 X-ray diffraction experiments to control the purity of the CsH<sub>2</sub>PO<sub>4</sub> after synthesis at 25°C. A G670 Guinier Camera (Huber)
- 4 using copper  $K_{\alpha}$  radiation ( $\lambda$  = 1.541 Å) and a 2 $\Theta$ -range between 15° and 70° was used. Diffractogram was compared to results
- 5 of pure  $CsH_2PO_4$  at 25°C published by Preisinger et al.<sup>[5]</sup>



6 S5: Impedance measurements





2 CP/Pt@CDP porous: staircase potential electrochemical impedance spectroscopy (SPEIS) after different times for voltages U =
 3 0.05 V and 0.35 V. Time is indicated by the colour and the respective voltage by the symbol.



**Pt@CP**/CDP: staircase potential electrochemical impedance spectroscopy (SPEIS) after different times for voltages U = 0.05 V 6 and 0.35 V. Time is indicated by the colour and the respective voltage by the symbol.



3 Pt@CP<sub>MPL</sub>/CDP-MEA: staircase potential electrochemical impedance spectroscopy (SPEIS) after different times for voltages U
 4 = 0.05 V and 0.35 V. Time is indicated by the colour and the respective voltage by the symbol.





## 1 S6: SEM analyzation of CP<sub>MPL</sub>/Pt @CDP



- 2
- 3 SEM micrographs of the  $CP_{MPL}/Pt@CDP$  anode after carbon paper removal. (a) Secondary electron (SE) detector. (b) Back
- $4\quad \text{scattering electron (BSE) detector. Relevant phases are marked in (b)}.$



- 5
- 6 SEM micrographs of the CP<sub>MPL</sub>/**Pt@CDP** cathode after carbon paper removal. (a) Secondary electron (SE) detector. (b) Back
- 7 scattering electron (BSE) detector. Relevant phases are marked in (b).

## 1 S7: SEM analyzation Pt@CP<sub>MPL</sub>/CDP



3~ SEM micrographs of the  $\mbox{CP}_{\mbox{\scriptsize MPL}}$  after platinum deposition.

#### 4 S8: SEM analyzation Pt@CP/CDP

- 5 Two different sections of the **Pt@CP**/CDP cathode surface were analyzed by SEM. During removement
- $6\,$  of the carbon paper, platinum occasionally detachment from the carbon fiber leaving behind a
- 7 platinum coated imprint. Morphological changes of the electrolyte close to the imprint are visible.



- 8
- 9 SEM micrographs of the **Pt@CP/**CDP cathode after carbon paper removal. (a) Secondary electron (SE) detector. (b) Back
- 10 scattering electron (BSE) detector. Relevant phases are marked in (b).



2 SEM micrographs of the **Pt@CP/**CDP cathode after carbon paper removal. (a) Secondary electron (SE) detector. (b) Back 3 scattering electron (BSE) detector. Relevant phases are marked in (b).

#### 4 S9: Contact area CsH<sub>2</sub>PO<sub>4</sub> – Platinum

5 After measuring platinum plated carbon paper (CP) electrodes, the carbon paper was removed prior 6 to scanning electron microscope (SEM) investigation. At areas where carbon strands were in contact 7 with the CsH<sub>2</sub>PO<sub>4</sub> surface, imprints can be seen on the surface. During the removal process, platinum 8 detached from the carbon fibers and is present at the electrolyte surface. Using a back-scattering 9 detector, a high material contrast could be achieved for magnifications between 500 and 1000 10 depending on the sample, making an image processing with the image J software (Version 1.52t) 11 possible. Representative overlays of the SEM micrographs and contact area determined by the image 12 processing are shown. There is a large variation between the samples, resulting in a relatively large 13 standard deviation. Since this analysis was designed to provide a rough overview of the area coverage

14 the scale of 7 measurements was considered sufficient by the authors.



- 16 Representative overlays of the SEM micrographs and contact area determined by the image processing for sample 1, position
- 17 1 (S.1/P.1) and sample 2, position 1 (S.2/P.1).

<sup>15</sup> 



- 2 Representative overlays of the SEM micrographs and contact area determined by the image processing for sample 2, position
- 3 2 (S.2/P.2) and sample 3, position 1 (S.3/P.1).



- 5 Figure S 3 Representative overlays of the SEM micrographs and contact area determined by the image processing for
- sample 3, position 2 (S.3/P.2) and sample 3, position 3 (S.3/P.3).



 $\,$  Figure S 4 Representative overlays of the SEM micrographs and contact area determined by the image processing for

10 sample 3, position 4 (S.3/P.4).

- 1 Results of analyzing a total of 7 different locations on 3 different cells are summarized in the table.
- 2 Overall, an area coverage of 18 ± 9% was obtained. Which represents a considerable decrease of the
- 3 platinum coverage compared to the completely covered platinum thin film electrodes.

| 4 | Results of analyzing a total of 7  | different locations on | 3 different cells. An overal | Il coverage of 18 ± 9% was obtained. |
|---|------------------------------------|------------------------|------------------------------|--------------------------------------|
| • | incounce of analyzing a cocar of y |                        |                              |                                      |

| Sample | Position | Area coverage [%] |
|--------|----------|-------------------|
| 1      | 1        | 12.0              |
| 2      | 1        | 21.6              |
| 2      | 2        | 33.1              |
| 3      | 1        | 20.0              |
| 3      | 2        | 13.8              |
| 3      | 3        | 11.1              |
| 3      | 4        | 17.4              |

5

#### 6 **S10: Calculation of the sheet resistance**

7 At 20°C, platinum bulk metal has an electrical resistivity of  $1.05^*10^{-7} \Omega$  m. With a thickness of 30 nm,

8 the electrical resistivity of the platinum thin film can be described in good approximation with bulk

9 behavior.<sup>[3]</sup> With a temperature coefficient " $\alpha$ " of 0,003927 K<sup>-1</sup> and  $\Delta T = 220$ °C, the resulting electrical

10~ resistivity "p" at operating temperature of 240°C can be calculated by:  $^{[4]}$ 

11  $\rho_{240^{\circ}C} = \rho_{20^{\circ}C} * (1 + \alpha \Delta T) = 1,05 * 10^{-7} * (1 + 0,86394) \Omega m = 1.98 * 10^{-7} \Omega m$ 

12 The resulting sheet resistance for a layer thickness of t = 30 nm can be calculated by:

$$R_{S,240^{\circ}C} = \frac{\rho_{240^{\circ}C}}{t} = \frac{1.98 * 10^{-7} \,\Omega m}{3.0 * 10^{-8} \,m} = 6.6 \,\Omega$$

14

#### 15 **References**

- [15] Wagner, M.; Dreßler, C.; Lohmann-Richters, F. P.; Hanus, K.; Sebastiani, D.; Varga, A.; Abel, B., J.
- 17 Mater. Chem. A, (2019) **7**, 27367.
- 2 Papandrew, A. B.; Chisholm, C. R.I.; Elgammal, R. A.; Özer, M. M.; Zecevic, S. K., Chem. Mater., (2011)
- 19 **23**, 1659.
- [23] Avrekh, M.; Monteiro, O.R.; Brown, I.G., Applied Surface Science, (2000) 158, 217.
- [4] Serway, R. A., *Principles of physics*, (1998-), Fort Worth, Saunders College Pub.
- [25] Preisinger, A.; Mereiter, K.; Bronowska, W., MSF, (1994) 166-169, 511.
- 23