Supporting Information

Selective Conversion of Furfural into Tetrahydrofurfuryl Alcohol using Heteropoly acid-based Material as Hydrogenation Catalyst

Paramita Koley^{a,b}, B. Srinivasa Rao^b, Ylias M. Sabri^a, Suresh K. Bhargava^a J. Tardio^{a*} and N. Lingaiah^{b*}

- (a) Centre for Advanced Materials & Industrial Chemistry (CAMIC), School of Applied Sciences, RMIT University, GPO BOX-2476, Melbourne 3001, Australia.
- (b) Catalysis & Fine Chemicals Division, CSIR-Indian Institute of Chemical Technology, Hyderabad-500 607, India

Chemicals:

All chemicals used in this work were purchased from Sigma-Aldrich A. R. grade (99.9%) to synthesize different catalysts. Different chemicals such as $Na_2MoO_4 \cdot 2H_2O$, $Pd(NO_3)_2 \cdot 2H_2O$, γ -Al₂O₃, TiO₂, SiO₂, ZrO₂ and Nb₂O₅ were implemented to prepare different catalysts. The solvents and reagents for example furfural, THFAL, FAL and isopropanol were purchased from both Sigma-Aldrich and Fisher Scientific. Double distilled water was used for the wet impregnation method to synthesize the catalysts.

Raman Spectroscopy:

Fig. S1 represents Raman spectra of PdMPAV₂ and supported with various supports like titania, zirconia, alumina, niobia and silica. In PdMPAV₂ Raman spectra, a sharp peak at 1000 cm⁻¹ related to $M = O_t$ vibration of Keggin ion and two small peak 256 cm⁻¹ and 630 cm⁻¹ are also Raman characteristic band of MPA Keggin structure¹. In all supported catalysts the peak at 1000 cm⁻¹ was present but the intensity of the peak was poor compared to pure PdMPAV₂ as only twenty weight percentage of PdMPAV₂ was loaded in the oxide support. For the alumina supported catalysts the broad peak at 430 cm⁻¹ is corresponds to α -Al₂O₃². Zirconia supported catalyst also exhibited the main characteristic peaks of ZrO₂ at 486 cm⁻¹ and 658 cm⁻¹. Moreover, the Raman profile of PdMPAV₂/SiO₂ mainly contained the peak at 500 cm⁻¹ which belong to SiO₂³. The broad peak at 700 cm⁻¹ for Raman profile of niobia supported catalyst the three

main peaks at 380 cm⁻¹, 540 cm⁻¹ and 750 cm⁻¹ are related to anatase phase of titania⁴. The Raman spectra of all supported catalysts mainly contained the peaks corresponds to the characteristic peak of the support material.

Determination of Metal dispersion, Surface Area and Particle size by Chemisorption:

The metal dispersion factor in a metal catalyst which is supported with different supports are generally described as the proportional ratio of the total number of surface atoms and the total number of atoms in the catalyst. This ranges of this factor is from 0 to 1, where 1 correlated to the atomic level dispersion of the metal on the catalyst support (most of the cases it may not achieve unity).^{5, 6} The normalized equations to measure the metal dispersion, active metal surface area and metal crystallite size are provided bellow:

Dispersion (%) =
$$\frac{Uptake\left(\frac{\mu mol}{gcat}\right)}{Total metal\left(\frac{\mu mol}{gcat}\right)} \times 100$$

Metal area = Metal cross sectional area \times No. of metal atoms on surface

Particle size (nm) =
$$\frac{6000}{total metal\left(\frac{m2}{gcat}\right) \times \rho\left(\frac{g}{cc}\right)}$$

 ρ = metal density

Product Analysis by Gas Chromatography (GC/GC-MS):

All the reactants, products and intermediate are confirmed and analyzed by GC-MS (Model QP 5050 supplied by M/S. Shimadzu Instruments Corporation, Japan) and GC (Shimadzu 2010) respectively. The GC is equipped with flame ionization detector (FID) and INNO Wax capillary column (diameter: 0.25 mm, length: 30 m) is used for the separation of the reaction mixtures. The product and reactant mixture which are collected from the reactor was added into the organic solvents (methanol or acetone) and equal amount of an internal standard (anisole) was added before starting the GC analysis. The GC programming conditions are different for different reactions. The temperature of the injector is 250 °C, the temperature of oven/column is usually 80 - 280 °C with the ramping rate of 10 °C min⁻¹ and holding time is

3 and 5 minutes for starting and the end time of the analysis respectively. The FID temperature is 300 °C.

e conversion of reactant=
$$\left(\frac{Furfuralc_{intial} - Furfuralc_{final}}{Furfuralc_{intial}}\right) \times 100$$

The

$$\left|\frac{P_i}{\sum P_i}\right| \times 100$$

Selectivity of the product= $L^{I_{ij}}$ (where i= product, reactant and intermediate for particular reaction and P is targeted product.) where reactant is furfural.

$$\text{Yield} = \left(\frac{Conversion \times Selectivity}{100}\right)$$

The carbon balance was attained by calculating the amount of carbon in liquid phase reaction by GC-FID and measured by the equation,⁷

 $\times \frac{(moles of \ carbon \ out \ (all \ products \ and \ reactants))}{moles \ of \ carbon \ in \ (reactant)}$ Carbon balance (%) = 100

Here reactant is furfural. Products are THFAL, FAL, MeTHF, MeF and 1,5 pentanediol which mainly depends on reaction condition and catalysts.

The initial turn over frequency (TOF) of the catalyst was calculated by this equation.

(moles of product) $TOF = \overline{\{(moles of metal in catalyst) \times (dispersion) \times (reaction time)\}}$

The product mentioned in the equation is the targeted product, THFAL.

Hot Filtration Test:

A hot filtration test was also investigated to determine the heterogenicity of the catalyst under the optimized reaction condition. 100 ml Parr Autoclave was pressurized with 2.5 H₂ pressure and loaded with furfural (2.402 wt.%), catalyst (0.8 wt.%) and 25 ml isopropanol and set the reaction temperature at 150 °C. After one hour of reaction, the catalyst was filtered and separated from the reaction solution; furthermore, the reaction was carried out for 2 h. The yield of THFAL was not enhanced which is confirmed by GC-MS analysis. It can be interpreted that this catalyst is reusable as well as stable for this reaction without leaching of the metal. The tests confirmed that the catalyst was stable and reusable under the reaction condition.

Recyclability tests:

After the completion of the reaction the catalyst was washed with MeOH with two or three times and dried in 60 °C oven for overnight. After that the catalyst was employed for the next catalytic cycle. The conversion and the selectivity of the reactant and products after the reaction were analyzed by GC.

Fig. S1: Raman profiles of palladium exchanged vanadium incorporate molybdophosphoric acid on different supports. (a) PdMPAV₂ (b) PdMPAV₂/Al₂O₃ (c) PdMPAV₂/ZrO₂ (d) PdMPAV₂/SiO₂ (e) PdMPAV₂/Nb₂O₅ (f) PdMPAV₂/TiO₂

Support	Surface area (m ² g ⁻¹)
Al ₂ O ₃	100
ZrO_2	75
TiO_2	80
Nb ₂ O ₅	60
SiO_2	395

Table S1: Surface area of supports

(a)

(b)

(d)

Fig. S2: Elemental mapping of (a) $PdMPAV_2/ZrO_2$ (b) $PdMPAV_2/TiO_2$ (c) $PdMPAV_2/SiO_2$ (d) $PdMPAV_2/Nb_2O_5$

Fig S3: (a) & (b) TEM and (c) STEM of $PdMPAV_2/Al_2O_3$

Fig. S4: TEM images of (a) fresh PdMPAV₂/Al₂O₃ (b) used PdMPAV₂/Al₂O₃

Fig.S5: Particle size distribution of (a) Fresh PdMPAV $_2$ /Al $_2O_3$ and (b) used PdMPAV $_2$ /Al $_2O_3$ catalyst.

Fig. S6: (a) TEM image of Pd/Al_2O_3 catalyst (b) particle size obtained from TEM

Catalyst	Furfural Conversion (%)	THFAL selectivity (%)	FAL selectiv ity (%)	MeTHF selectiv ity (%)	MeF selectiv ity (%)	1,5 pentanediol selectivity (%)	Carbon balance (%)
Pd/Al ₂ O ₃	65	68.50	22.30	0	0.08	9.12	98.4
Pd-V/Al ₂ O ₃	67.1	66.34	26.06	0	0	7.60	97.6
PdMPA/Al ₂ O ₃	81.8	80	8	0	0	12	98.2
PdMPAV ₁ /Al ₂ O ₃	87.1	88.3	7.7	0	0	4	98.1
PdMPAV ₂ /Al ₂ O ₃	100	95	0	5	0	0	98.3

Table S2:	Activity	of different	catalysts
-----------	----------	--------------	-----------

Different catalyst	Active metal surface area (m ² g ⁻¹)	Dispersion factor (%)	Metal Particle Diameter (nm)
Pd/Al ₂ O ₃	42.5	15.7±3.5	7.2
Pd-V/Al ₂ O ₃	43.6	17.5±3.6	7.0
PdMPA/Al ₂ O ₃	62.1	23.5±3.6	6.4
PdMPAV ₁ /Al ₂ O ₃	69.2	27.8±3.4	6.3
PdMPAV ₂ /Al ₂ O ₃	75.8	33.8±3.8	5.3

Fig S7: NH₃-TPD of (a) PdMPA/Al₂O₃ (b) PdMPAV₁/Al₂O₃ (c) PdMPAV₂/Al₂O₃

Different catalyst	Total acidity (mmol g ⁻¹)
PdMPA/Al ₂ O ₃	1.543
PdMPAV ₁ /Al ₂ O ₃	1.312
PdMPAV ₂ /Al ₂ O ₃	1.214

Table S3: CO-chemisorption studies

Catalyst	Reaction time (h)	Temperature (°C)	H ₂ Pressure (MPa)	Solvent	Furfural conversi on (%)	FAL Conve rsion (%)	THFA L Yield (%)	TOF (h ⁻¹)	THFAL yield g _{catalyst} ⁻¹	Refer ence
Pd/MFI (3 wt% Pd)	5	220	3.4	isoprop anol	93	-	83	14	65.4	8
$ \frac{\text{Ni/g-}}{\text{Al}_2\text{O}_3} \\ (15) \\ \text{wt\%} \\ \text{Ni}) $	2	80	4	Ethanol	-	99.8	99.5	24	87.6	9
Pd–Ir– ReO _x /Si O ₂	2	50	6	water	>99.9	-	78	30.7	130.3	10
Ni/C- 500 (derive d from MOF)	2	120	1	2- propan ol	100	-	99	28.4	120.7	11
Rh/C (5 wt% Rh	32	30	1	N, N- dimeth ylaceta mide (DMA)	96	-	95	30	121.2	12
	16	30	0.1	DMA	-	100	96	31	123	
Ni– Co/SB A-15	2	90	5	Ethanol			92	20.3	89.0	13
Pd–Ir– ReO _x /Si O ₂	8	40	6	water	99.9		66.8	30	78.9	14
Pt- Li/Co ₂ AlO ₄	24	130	1.5	ethanol			31.3%	8	45.8	15
PdMPA V ₂ /Al ₂ O ₃ (0.5	6	150	2.5	isoprop anol	100	-	95	32.6	118.7	This work
wt.% Pd)	2	150	1.5	isoprop anol	-	100	100	33.7	125	This work

Table S5: Comparison of $PdMPAV_2$ - Al_2O_3 catalyst with previously reported catalysts

Fig. S8: XPS spectra of $PdMPAV_2$ - Al_2O_3 (a) Pd-3d for reduced (b) Pd-3d for fresh (c) Mo-3d for reduced (d) Mo-3d for fresh

Catalyst	Al 2p _{3/2} (e.V)	V 2p _{3/2} (e.V)
Reduced catalyst	74.8	517.9
PdMPAV ₂ /Al ₂ O ₃		
Catalyst before reduction	74.5	517.9
PdMPAV ₂ /Al ₂ O ₃		

Table S6: Binding energy values of V and Al

Effec	t of time	Effect of tem	Effect of temperature Effect of H ₂		Effect of catalyst		Effect of initial		
				Pressure		concentration		concentration of	
								furf	ural
Time	Carbon	Temperature	Carbon	H ₂	Carbon	Catalyst	Carbon	Furfural	Carbon
(h)	balance	(°C)	balance	pressure	balance	concentration	balance	initial	balance
	(%)		(%)		(%)	(wt.%)	(%)	conc.	(%)
								(wt.%)	
2	98.6	90	98.6	1	98.7	0.4	98.5	1.2	98.5
4	98.4	120	98.5	1.5	98.4	0.6	98.6	2.4	98.3
6	98.3	150	98.3	2	98.3	0.8	98.3	3.6	98.1
8	98.3	180	98.0	2.5	98.1	1	98.1	4.8	95.6
-	-	200	95.3	3	98.3	1.2	98.1	6.0	94.3

Table S7: Carbon balance for effect of temperature, pressure, time and catalyst concentration

 Table S8: Carbon balance in recyclability tests

No of cycles	Carbon balance (%)
1	98.3
2	98.1
3	98.3
4	97.9
5	98.1

Fig. S9: XPS of (a) Pd-3d (b) Mo-3d for used PdMPAV₂-Al₂O₃ catalyst

Catalyst	V 2p (e.V)	O 1s (e.V)	P 2p (e.V)	Al 2p (e.V)
Used	517.7	531.8	134.7	74.7
PdMPAV ₂ -		530.7		
Al_2O_3				

Fig. S10: XRD of used PdMPAV₂-Al₂O₃ catalyst

Fig. S11: ^{31}P NMR of PdMPAV_2-Al_2O_3 and Used PdMPAV_2-Al_2O_3 catalyst

Fig. S12: UV visible spectra of $PdMPAV_2$ - Al_2O_3 and Used $PdMPAV_2$ - Al_2O_3 catalyst

Fig. S13: Raman spectra of PdMPAV₂-Al₂O₃ and Used PdMPAV₂-Al₂O₃ catalyst

References

- 1. K. V. Rao, P. Rao, P. Nagaraju, P. S. Prasad and N. Lingaiah, *Journal of Molecular Catalysis A: Chemical*, 2009, **303**, 84-89.
- 2. J. Gangwar, B. K. Gupta, S. K. Tripathi and A. K. Srivastava, *Nanoscale*, 2015, 7, 13313-13344.
- G. Dovbeshko, O. Fesenko, V. Boyko, V. Romanyuk, V. Moiseyenko, V. Gorelik, L. Dolgov, V. Kiisk and I. Sildos, 2012.
- 4. H. A. Mahmoud, K. Narasimharao, T. T. Ali and K. M. Khalil, *Nanoscale research letters*, 2018, **13**, 48.
- 5. I. Langmuir, *Journal of the American Chemical society*, 1918, **40**, 1361-1403.
- 6. I. Langmuir, Journal of the American chemical society, 1916, **38**, 2221-2295.
- 7. J. Lee, Y. Xu and G. W. Huber, *Applied Catalysis B: Environmental*, 2013, **140**, 98-107.
- 8. N. S. Biradar, A. M. Hengne, S. N. Birajdar, P. S. Niphadkar, P. N. Joshi and C. V. Rode, *ACS Sustainable Chemistry & Engineering*, 2014, **2**, 272-281.

- S. Sang, Y. Wang, W. Zhu and G. Xiao, *Research on Chemical Intermediates*, 2017, 43, 1179-1195.
- 10. S. Liu, Y. Amada, M. Tamura, Y. Nakagawa and K. Tomishige, *Green Chemistry*, 2014, **16**, 617-626.
- 11. Y. Su, C. Chen, X. Zhu, Y. Zhang, W. Gong, H. Zhang, H. Zhao and G. Wang, *Dalton Transactions*, 2017, **46**, 6358-6365.
- 12. B. M. Matsagar, C.-Y. Hsu, S. S. Chen, T. Ahamad, S. M. Alshehri, D. C. Tsang and K. C.-W. Wu, *Sustainable Energy & Fuels*, 2020, 4, 293-301.
- 13. S. Li, Y. Wang, L. Gao, Y. Wu, X. Yang, P. Sheng and G. Xiao, *Microporous and Mesoporous Materials*, 2018, **262**, 154-165.
- 14. Y. Nakagawa, M. Tamura and K. Tomishige, *Catalysis Surveys from Asia*, 2015, **19**, 249-256.
- 15. R. Karinen, K. Vilonen and M. Niemelä, ChemSusChem, 2011, 4, 1002-1016.