Sustainable Energy & Fuels

PAPER

Supporting Information

Insights into the trade-off between oxygen reduction reaction activity and CO₂ stability in cation doped Ba_{0.9}Co_{0.7}Fe_{0.3}O_{3-δ} perovskite cathode for solid oxide fuel cells

Yi Lu^{a, b} Xinyu Zhao,^{a, b} Zhihong Wang*c and Xifeng Ding*a, b

^a School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing

210094, China.

^b Key Laboratory of advanced micro & nano Materials and technology in Jiangsu Province, Nanjing 210094, China.

^c Department of Physics, Harbin Institute of Technology, Yikuang Street 2#, Harbin, Heilongjiang 150001, China.

Corresponding author: Xifeng Ding, Zhihong Wang E-mail: <u>dingxifeng@njust.edu.cn</u>(X. Ding), <u>wangzhihong@hit.edu.cn</u>(Z. Wang)

Figure S1

Fig. S1 XPS spectra of Fe atoms in B90CF and B90CFM (M= Zr, Nb, Y)

Figure s2

Fig. S2 XPS spectra of Co atoms in B90CF and B90CFM (M= Zr, Nb, Y)

Table S1

Table S1 Reitveld refinement results of B90CFZr, B90CFNb and B90CFY

Sample	Structure	Space	Lattice parameters				R-(%)	R(%)	v ²
		group	a (Å)	<i>b</i> (Å)	c (Å)	V (Å ³)	-		Λ
B90CFZr	cubic	Pm-3m	4.0841	4.0841	4.0841	68.12	12.22	9.22	0.3639
B90CFNb	cubic	Pm-3m	4.0714	4.0714	4.0714	67.49	11.60	8.50	0.3198
B90CFY	cubic	Pm-3m	4.0952	4.0952	4.0952	68.68	14.36	11.49	0.4448

Table. S2 The wt% of each element obtained by surface scanning EDS test in the selected area of each sample shown in Figure 9 Element

Sample	Element							
Sumple	Ва	Со	Fe	0	С	Zr		
B90CF before test	51.68	16.67	6.15	22.10	3.40			
B90CF after test	47.72	13.87	4.84	26.73	6.83			
B90CFZr before test	54.81	14.85	4.69	19.12	3.65	2.88		
B90CFZr after test	52.11	13.16	3.95	24.05	4.21	2.52		

This journal is © The Royal Society of Chemistry 20xx

Tab. S3 Comparison of single cell peak power density between B90CFZr and B90CF

Sample	Peak Power Density (mW cm ⁻²)				
Sumple	600°C	650°C	700°C		
B90CF	418	561	682		
B90CFZr	394	543	667		