Supporting information

Two-Dimensional CuAg/Ti₃C₂ Catalyst for Electrochemical Synthesis of Ammonia under Ambient Conditions: a combined Experimental and Theoretical Study

Anmin Liu^{a,*}, Qiyue Yang^a, Xuefeng Ren^d, Mengfan Gao^a, Yanan Yang^a, Liguo

Gao^a, Yanqiang Li^a, Yingyuan Zhao^e, Xingyou Liang^a,

Tingli Ma^{b, c, *}

^a State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, China.

E-mail: liuanmin@dlut.edu.cn, anmin0127@163.com

^b Department of Materials Science and Engineering, China Jiliang University, Hangzhou, 310018, China.

^c Graduate School of Life Science and Systems Engineering, Kyushu Institute of

Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0196, Japan.

E-mail: tinglima@life.kyutech.ac.jp

^d School of Ocean Science and Technology, Dalian University of Technology, Panjin, 124221, China.

^e College of Chemical Engineering and Safety, Binzhou University, Binzhou, 256603,
 China.

S1

Fig. S1 Schematic diagram of the experimental cell configuration for electrocatalytic NRR

Fig. S2 UV–vis absorption spectra for standard solutions with different concentrations and calibration curve used for estimation of NH₃ concentration

Fig. S3 UV–vis absorption spectra for standard solutions with different concentrations and calibration curve used for estimation of N_2H_4 concentration

Fig. S4 EDX spectrum of $CuAg/Ti_3C_2$ (Cu:Ag = 10:1)

Fig. S5 UV-vis absorption spectra of 0.1 M electrolyte at different potentials

Fig. S6 CV scans of CuAg/Ti₃C₂ (Cu:Ag=10:1) for 200 cycles

Catalyst	Electrolyte	NH ₃ yield	FE (%)	stability	Ref.
				test	
B-doped	0.05 M	9.8 μg cm ⁻² h ⁻¹	10.8	5 cycles;	1
graphene	H_2SO_4	(-0.5 V)	(-0.5 V)	10 h	
Bi NS	0.1 M	2.54 μg h ⁻¹ cm ⁻²	10.46	6 cycles;	2
	Na ₂ SO ₄	(-0.8 V)	(-0.8 V)	25 h	
BNS	0.1 M	13.22 μg h ⁻¹ mg ⁻¹ _{cat}	4.04	6 cycles;	3
	Na ₂ SO ₄	(-0.8 V)	(-0.8 V)	24 h	
R-WO ₃ NSs	0.1 M HCl	17.28 μg h ⁻¹ mg ⁻¹ _{cat}	7.0	6 cycles;	4
		(-0.3 V)	(-0.3 V)	24 h	
Ti ₃ C ₂ T _x	0.5 M	4.72 μg h ⁻¹ cm ⁻²	4.62	6 cycles	5
	Li ₂ SO ₄	(-0.1 V)	(-0.1 V)		
NV-W ₂ N ₃	0.1 M	$3.80 \times 10^{-11} \text{ mol cm}^{-2} \text{ s}^{-1}$	11.67	12 cycles;	6
	КОН	(-0.2 V)	(-0.2 V)	10 h	
2DAS MoO _{3-x}	0.1 M	35.83 μg h ⁻¹ mg ⁻¹ _{cat}	12.01	16 h	7
	КОН	(-0.4 V)	(-0.2 V)		
MoS ₂ /CC	0.1 M	$8.08 \times 10^{-11} \text{ mol s}^{-1} \text{ cm}^{-1}$	1.17	10 cycles;	8
	Na ₂ SO ₄	(-0.5 V)	(-0.5 V)	26 h	
MoS ₂ /BCCF	0.1 M	$4.38 \times 10^{-10} \text{mol s}^{-1} \text{cm}^{-2}$	9.81	5 cycles;	9
	Li ₂ SO ₄	(-0.2 V)	(-0.2 V)	12 h	
TiO ₂ /Ti	0.1 M	$9.16 \times 10^{-11} \text{ mol s}^{-1} \text{ cm}^{-2}$	2.50	10 cycles;	10
	Na ₂ SO ₄	(-0.7 V)	(-0.7 V)	24 h	
Ru/2H-MoS ₂	0.01 M	$1.14 \times 10^{-10} \text{ mol s}^{-1} \text{ cm}^{-2}$	17.6	4 h	11
	HCl	(-0.15 V, 50 °C)	(-0.15 V, 50		
			°C)		
h-BNNS	0.1 M HCl	22.4 µg h ⁻¹ mg ⁻¹ _{cat}	4.7	6 cycles;	12
		(-0.75 V)	(-0.75 V)	24 h	
Mn ₃ O ₄ @rGO	0.1 M	17.4 µg h ⁻¹ mg ⁻¹ _{cat}	3.52	5 cycles;	13
	Na ₂ SO ₄	(-0.85 V)	(-0.85 V)	24 h	
LTO-CP	0.1 M HCl	25.15 μg h ⁻¹ mg ⁻¹ _{cat}	4.55	6 cycles;	14
		(-0.55 V)	(-0.55 V)	24 h	
VN/TM	0.1 M HCl	$8.40 \times 10^{-11} \text{ mol s}^{-1} \text{ cm}^{-2}$	2.25	10 cycles;	15
		(-0.5 V)	(-0.5 V)	8 h	
CuAg/Ti ₃ C ₂	0.1 M	4.12 μmol cm ⁻² h ⁻¹ (70.04	9.77	5 cycles;	This
	КОН	μg cm ⁻² h ⁻¹)	(-0.5 V)	12 h	work
		(-0.5 V)			

Table S1. Comparison of the NRR performances for CuAg/Ti₃C₂ with published 2D NRR electrocatalysts.

Fig. S7 s orbit PDOS of Ti₃C₂, Cu/Ti₃C₂, Ag/Ti₃C₂, and CuAg/Ti₃C₂ composite materials.

Fig. S8 p orbit PDOS of Ti₃C₂, Cu/Ti₃C₂, Ag/Ti₃C₂, and CuAg/Ti₃C₂ composite materials.

Fig. S9 d orbit PDOS of Ti_3C_2 , Cu/Ti_3C_2 , Ag/Ti_3C_2 , and $CuAg/Ti_3C_2$ composite materials.

Reference

1. Yu, X.; Han, P.; Wei, Z.; Huang, L.; Gu, Z.; Peng, S.; Ma, J.; Zheng, G., Boron-Doped Graphene for Electrocatalytic N₂ Reduction. *Joule* **2018**, *2* (8), 1610-1622.

 Li, L.; Tang, C.; Xia, B.; Jin, H.; Zheng, Y.; Qiao, S.-Z., Two-Dimensional Mosaic Bismuth Nanosheets for Highly Selective Ambient Electrocatalytic Nitrogen Reduction. *ACS Catalysis* 2019, 9 (4), 2902-2908.

Zhang, X.; Wu, T.; Wang, H.; Zhao, R.; Chen, H.; Wang, T.; Wei, P.; Luo, Y.; Zhang, Y.; Sun,
 X., Boron Nanosheet: An Elemental Two-Dimensional (2D) Material for Ambient Electrocatalytic
 N₂-to-NH₃ Fixation in Neutral Media. *ACS Catalysis* 2019, *9* (5), 4609-4615.

Kong, W.; Zhang, R.; Zhang, X.; Ji, L.; Yu, G.; Wang, T.; Luo, Y.; Shi, X.; Xu, Y.; Sun, X.,
 WO₃ nanosheets rich in oxygen vacancies for enhanced electrocatalytic N₂ reduction to NH₃.
 Nanoscale 2019, *11* (41), 19274-19277.

Luo, Y.; Chen, G.-F.; Ding, L.; Chen, X.; Ding, L.-X.; Wang, H., Efficient Electrocatalytic N₂
 Fixation with MXene under Ambient Conditions. *Joule* 2019, *3* (1), 279-289.

6. Jin, H.; Li, L.; Liu, X.; Tang, C.; Xu, W.; Chen, S.; Song, L.; Zheng, Y.; Qiao, S.-Z., Nitrogen Vacancies on 2D Layered W₂N₃: A Stable and Efficient Active Site for Nitrogen Reduction Reaction. *Advanced Materials* **2019**, *31* (32), 1902709.

 Liu, W.; Li, C.; Xu, Q.; Yan, P.; Niu, C.; Shen, Y.; Yuan, P.; Jia, Y., Anderson Localization in 2D Amorphous MoO_{3-x} Monolayers for Electrochemical Ammonia Synthesis. *ChemCatChem* 2019, *n/a* (n/a).

8. Zhang, L.; Ji, X.; Ren, X.; Ma, Y.; Shi, X.; Tian, Z.; Asiri, A. M.; Chen, L.; Tang, B.; Sun, X., Electrochemical Ammonia Synthesis via Nitrogen Reduction Reaction on a MoS₂ Catalyst: Theoretical and Experimental Studies. *Advanced Materials* **2018**, *30* (28), 1800191.

9. Liu, Y.; Han, M.; Xiong, Q.; Zhang, S.; Zhao, C.; Gong, W.; Wang, G.; Zhang, H.; Zhao, H., Dramatically Enhanced Ambient Ammonia Electrosynthesis Performance by In-Operando Created Li–S Interactions on MoS₂ Electrocatalyst. *Advanced Energy Materials* **2019**, *9* (14), 1803935.

10. Zhang, R.; Ren, X.; Shi, X. F.; Xie, F. Y.; Zheng, B. Z.; Guo, X. D.; Sun, X. P., Enabling Effective Electrocatalytic N₂ Conversion to NH₃ by the TiO₂ Nanosheets Array under Ambient Conditions. *Acs Applied Materials & Interfaces* **2018**, *10* (34), 28251-28255.

Suryanto, B. H. R.; Wang, D.; Azofra, L. M.; Harb, M.; Cavallo, L.; Jalili, R.; Mitchell, D. R.
 G.; Chatti, M.; MacFarlane, D. R., MoS₂ Polymorphic Engineering Enhances Selectivity in the Electrochemical Reduction of Nitrogen to Ammonia. *ACS Energy Letters* 2019, *4* (2), 430-435.

Zhang, Y.; Du, H.; Ma, Y.; Ji, L.; Guo, H.; Tian, Z.; Chen, H.; Huang, H.; Cui, G.; Asiri, A.
 M.; Qu, F.; Chen, L.; Sun, X., Hexagonal boron nitride nanosheet for effective ambient N₂ fixation to NH₃. *Nano Research* 2019, *12* (4), 919-924.

Huang, H.; Gong, F.; Wang, Y.; Wang, H.; Wu, X.; Lu, W.; Zhao, R.; Chen, H.; Shi, X.; Asiri,
 A. M.; Li, T.; Liu, Q.; Sun, X., Mn₃O₄ nanoparticles@reduced graphene oxide composite: An efficient electrocatalyst for artificial N₂ fixation to NH₃ at ambient conditions. *Nano Research* 2019, *12* (5), 1093-1098.

Yu, J.; Li, C.; Li, B.; Zhu, X.; Zhang, R.; Ji, L.; Tang, D.; Asiri, A. M.; Sun, X.; Li, Q.; Liu, S.; Luo, Y., A perovskite La₂Ti₂O₇ nanosheet as an efficient electrocatalyst for artificial N₂ fixation to NH₃ in acidic media. *Chemical Communications* **2019**, *55* (45), 6401-6404.

15. Zhang, R.; Zhang, Y.; Ren, X.; Cui, G.; Asiri, A. M.; Zheng, B.; Sun, X., High-Efficiency Electrosynthesis of Ammonia with High Selectivity under Ambient Conditions Enabled by VN Nanosheet Array. *ACS Sustainable Chemistry & Engineering* **2018**, *6* (8), 9545-9549.