Effect of long-term short-circuiting in proton

exchange membrane fuel cells

Electronic Supplementary Information

Panagiotis Trogadas^{*,‡,1}, Jason I.S. Cho^{*,‡,1,2}, Nidhi Kapi1¹, Lara Rasha², Albert Corredera², Dan J.L. Brett², and Marc-Olivier Coppens¹

¹EPSRC "Frontier Engineering" Centre for Nature Inspired Engineering & Department of Chemical Engineering, University College London, London, UK

²Electrochemical Innovation Lab, Department of Chemical Engineering, University College London, London, UK

Corresponding authors

*Email: p.trogadas@ucl.ac.uk (P. Trogadas)

*Email: in.cho.13@alumni.ucl.ac.uk (J. I. S. Cho)

S1. TEM

Figure S 1. TEM image of Pt/C cathode MEA after 144 h at OCV and short-circuiting, showing migration of Pt clusters towards the catalyst/membrane interface.

Figure S 2. Higher magnification TEM image of Pt/C cathode MEA after 144 h at OCV and short-circuiting, focusing on Pt agglomerates.

Figure S 3. XPS survey spectrum of the unused cathode MEA.

Figure S 4. XPS survey spectrum of the cathode MEA after PEMFC under OCV measurement.

Figure S 5. XPS survey spectrum of the cathode MEA after PEMFC subjected to OCV and short-circuiting.

Table S 1. XPS chemical state information obtained from the platinum spectrum of the cathode MEA before and after OCV, with and without short-circuiting.

Element	Species	Atomic concentration % per element		
		Unused	OCV	OCV & Short- circuiting
Pt	Metallic	100	61.78	42.22
	Oxidized	0	38.22	57.78

S3. Polarization curves of PEMFCs under OCV, with or without short-circuiting

Figure S 6. Polarization curves for PEMFC under OCV. Experimental conditions: 35° C cell temperature, 100% RH, 0.1 1 min⁻¹ gas flow rate in the anode and cathode, and 0.4 mg_{Pt} cm⁻² loading in the anode and cathode.

Figure S 7. Polarization curves for PEMFC under OCV and short-circuiting. Experimental conditions: 35° C cell temperature, 100% RH, 0.1 l min⁻¹ gas flow rate in the anode and cathode, and 0.4 mg_{Pt} cm⁻² loading in the anode and cathode.

Figure S 8. Polarization curves for PEMFC under OCV with and without short-circuiting for 48 h. Experimental conditions: 35° C cell temperature, 100% RH, 0.1 l min⁻¹ gas flow rate in the anode and cathode, and 0.4 mg_{Pt} cm⁻² loading in the anode and cathode.

Figure S 9. Polarization curves for PEMFC under OCV with and without short-circuiting for 96 h. Experimental conditions: 35° C cell temperature, 100% RH, 0.1 l min⁻¹ gas flow rate in the anode and cathode, and 0.4 mg_{Pt} cm⁻² loading in the anode and cathode.

Figure S 10. Polarization curves for PEMFC under OCV with and without short-circuiting for 96 h. Experimental conditions: 35° C cell temperature, 100% RH, 0.1 l min⁻¹ gas flow rate in the anode and cathode, and 0.4 mg_{Pt} cm⁻² loading in the anode and cathode.