SUPPLEMENTARY INFORMATION

Heterojunction of VO(OH)₂ nanorods onto hemp stem derived carbon for high voltage (1.5 V) symmetric supercapacitor

Bhumika Tiwari, Akanksha Joshi, Mehak Munjal, Raj Kishore Sharma*, Gurmeet Singh* Department of Chemistry, University of Delhi, Delhi -110007, INDIA

Corresponding Author: Gurmeet Singh: <u>gurmeet123@yahoo.com</u> Raj Kishore Sharma: <u>drrajksharma@yahoo.co.in</u>

Calculations

The equations used to evaluate specific capacitance of working electrodes were evaluated from the cyclic voltammograms curves using the following equation: ¹

$$C = \frac{1}{m_{\mathcal{V}}(V_a - V_c)} \int_{V_a}^{V_c} |i| dV$$
(1)

Where, m is the mass of the working electrode material (g), v is the scan rate (V s⁻¹), V_a indicates the initial voltage (V) while V_c represents the final voltage (V), i is the current density (A g⁻¹).

Supercapacitive performance of working electrode through charge discharge measurement was calculated using the following equation:

$$C_{\rm sp} = \frac{I \times \Delta t}{m \times \Delta V} \tag{2}$$

$$C_{\rm S} = \frac{I \times \Delta t}{m \times 3.6} \tag{3}$$

Where, where, C_s is the specific capacity (mAh g⁻¹), C_{sp} is the specific capacitance (F g⁻¹), ΔV is the operational window (V) excluding IR drop, Δt is the discharging time (s), I is the applied current (A), m is the mass deposited on electrode (g).

Further, to evaluate the supercapacitive cell performance through GCD following equations were used: ²

$$C_{\rm sp} = \frac{I \times \Delta t}{m \times \Delta V} \tag{4}$$

$$E = \frac{0.5 \times C_m (\Delta V)^2}{3.6} \tag{5}$$

$$P = \frac{E \times 3600}{\Delta t} \tag{6}$$

Where, C_{sp} capacitance of cell in F g⁻¹, I is the current in mA, Δt is the discharge time in s, m is the active mass on two electrode in g, ΔV is the voltage after IR drop in V, E is the energy density in Wh Kg⁻¹, and P is the power density in W kg⁻¹.

To determine the mechanism behind charge storage power's law is implied using equation:³

$$i(V) = a\theta^b \tag{7}$$

Here, a and b are adjustable parameters and v is the scan rate (V s⁻¹).

The following equation determines the contribution of current from capacitive and intercalation mechanism: ⁴

$$i(V) = k_1(\vartheta) + k_2(\vartheta)^{1/2}$$
(8)

The value of $k_1(v)$ and $k_2(v)^{1/2}$ gives the current contribution from capacitive and diffusion controlled intercalation mechanism respectively.

Randles plot determines the diffusion coefficient of electrode material by equation: ⁵

$$Z = R_{\rm s} + R_{\rm ct} + \sigma_{\rm w.} \omega^{-0.5}$$

$$D_{\rm w} = \left[\frac{RT}{\sqrt{2} A F^2 \sigma \omega c}\right]$$
(10)

Where, ω is angular frequency' σ_w is the Warburg coefficient in Ω s^{-1/2} and Rct and Rs are charge transfer resistance and solution resistance respectively. D_w is the diffusion ion coefficient in m² s⁻¹, A is the area of the electrode in m², T is the absolute temperature in K, R is the gas constant in J K⁻¹ mol⁻¹, F is the faraday constant in C mol⁻¹ and Warburg impedance is used to describe the electrochemical process on electrodes and it represents the resistance to mass transfer. Conductivity of VO(OH)₂, VO(OH)₂/AC-2 is determined by using the following equation:

$$\frac{l}{R=\rho a}$$
(11)

From the plot of I-V, the value of resistance (R) is determined and is used to calculate resistivity (ρ). Conductivity is reciprocal of resistivity.

Fig. S1 FTIR spectra of VO(OH)₂.

Fig. S2 FE-SEM image of raw hemp stem.

Fig. S3 (a) Nitrogen sorption isotherms [inset: Pore size distribution] XPS spectra of (b) V 2p (c) C 1s (d) O 1s of VO(OH)₂/AC-2.

Fig. S4 (a) I-V measurement of $VO(OH)_2$, $VO(OH)_2/AC-2$ (b) Randles plot of $VO(OH)_2$, $VO(OH)_2/AC-2$.

Fig. S5 Plot of $1/v^{1/2}$ versus $v^{1/2}$ for: (a) HAC (b) VO(OH)₂/AC-2 (c) Contibution of diffusive current at -0.2 V.

Fig. S6 (a, b, c) Trasatti plot for VO(OH)₂, VO(OH)₂/AC-1, VO(OH)₂/AC-2, VO(OH)₂/AC-3.

Fig. S7 (a) XRD, (b) Raman spectra of VO(OH)₂/AC-2 before and after cycling.

References:

1 A. K.Tomar, R. B. Marichi, G. Singh and R. K. Sharma, *Electrochim. Acta*, 2019, 296, 120–129.

2 V. Sahu, M. Mishra, G. Singh and R. K. Sharma, ACS Sustainable Chem. Eng., 2017, 5 450-459.

3 K. V. Sankar, S. Surendran, K. Pandi, A. M. Allin, V. D. Nithya, Y. S. Lee and R. K. Selvan, *RSC Adv.*, 2015, 5, 27649–27656.

4 M. Sathiya, A. S. Prakash, K. Ramesh, J. M. Tarascon and A. K. Shukla, *J. Am. Chem. Soc.* 2011, 133, 1629–16299.

5 S. Lalwani, V. Sahu, R. B. Marichi, G. Singh and R. K. Sharma, *Electrochimic. Acta*,2017 224, 517–526.