Electronic Supplementary Information

Nanostructuring SnTe to improve thermoelectric properties through Zn and Sb co-doping

Samuel Kimani Kihoi and Ho Seong Lee*

School of Materials Science and Engineering, Kyungpook National University

80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea

Sample	Density (g/cm ³)
SnTe	6.411
Sn _{0.99} Zn _{0.01} Te	6.404
Sn _{0.98} Zn _{0.02} Te	6.383
$Sn_{0.88}Zn_{0.02}Sb_{0.1}Te$	6.327
Sn _{0.83} Zn _{0.02} Sb _{0.15} Te	6.329

Table S1. Density of samples

Figure S1. (a) FESEM BSE image and (b-d) corresponding EDS mapping of elements.

Figure S2. Rietveld refinement for the sample $Sn_{0.83}Zn_{0.02}Sb_{0.15}Te$.

Figure S3. Temperature dependent diffusivity with temperature for the Zn and Sb samples.

Figure S4. Temperature dependent Lorenz number for the Zn and Sb co-doped samples.

Figure S5. (a) BF image showing numerous nanostructures within a grain, (b) corresponding SAED image showing presence of the CuPt-type ordering, (c) line scan data which confirms presence of alternating SnTe and ZnTe phases within the grain and (d) HRTEM image showing both A and B type variants as represented by the gold and orange lines for the

 $Sn_{0.98}Zn_{0.02}Te$ sample.

Figure S6. (a) HAADF image and (b-e) corresponding EDS mapping of the elements for the

 $Sn_{0.88}Zn_{0.02}Sb_{0.1}Te\ sample.$

Figure S7. (a) BF image showing dislocation and numerous nanostructures and (b) HRTEM image showing occurrence of Moiré fringes for the Sn_{0.88}Zn_{0.02}Sb_{0.1}Te sample.

Figure S8. (a) BF image, (b) SAED pattern and (c) HRTEM image for the

Sn_{0.83}Zn_{0.02}Sb_{0.15}Te sample.

Figure S9. Temperature dependent (a)electrical conductivity, (b) Seebeck coefficient, (c) power factor and ZT for $Sn_{0.98}Zn_{0.02}Te$ the sample.